Cu-Mediated C-H Cyanation of Arenes Using

N,N-Dimethylformamide (DMF) as the “CN” Source

Yuepeng Yan,† Yizhi Yuan,† and Ning Jiao*,†,‡

†State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China

‡State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

E-mail: jiaoning@bjmu.edu.cn Fax: (+86)10-82805297

Supporting Information

Table of Contents

<table>
<thead>
<tr>
<th>General Remarks</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Data for Products 2</td>
<td>2</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
<tr>
<td>¹H NMR and ¹³C NMR Spectra of Products 2</td>
<td>9</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2014
General Remarks.

All manipulations were conducted with Schlenk tube. 1H-NMR spectra were recorded on a Bruker AVANCE III-400 spectrometers. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl$_3$ as an internal standard. 13C-NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl$_3$ ($\delta = 77.00$ ppm). High Resolution Mass spectra were recorded using a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (APEX IV, Bruker). Mass spectra were recorded using a PE SCLEX QSTAR spectrometer. The 2-phenylpyridine substrates were prepared according to the literature.\(^1\) Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Analytical data for compounds 2

2-(Pyridin-2-yl)benzonitrile (2a)

Typical procedure: CuBr (114.8 mg, 0.8 mmol), substrate 2-phenylpyridine 1a (62.1 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) were added to a 25 mL Schlenk tube under O$_2$ (1 atm), followed by addition of 3 mL DMF. The reaction mixture was vigorously stirred at 135 °C for 48h as monitored by TLC. After cooling down to room temperature, 10 mL brine was added in the solution and extracted with ethyl acetate (10 mL × 3). The combined organic layer was dried over anhydrous MgSO$_4$. The solvent was concentrated *in vacuo* and the residue was purified by flash chromatography on a short silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to afford 44.0 mg (61%) of 2a. 2a: 1H NMR (CDCl$_3$, 400 MHz): $\delta =$ 8.78 (d, $J = 4.4$ Hz, 1H), 7.86-7.78 (m, 4H), 7.72-7.68 (m, 1H), 7.53-7.49 (m, 1H), 7.38-7.34 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz): $\delta =$ 155.2, 149.9, 143.5, 136.8, 134.1, 132.8, 130.0, 128.7, 123.3, 123.2, 118.7, 111.1 ppm; IR (neat): $\nu =$ 3064.0, 2224.3, 1585.4, 1300.6, 761.2 cm$^{-1}$; MS (EI) m/z 181.3 (100) [M]$^+$.

5-Methyl-2-(pyridin-2-yl)benzonitrile (2b)
The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(p-tolyl)pyridine 1b (67.7 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 56.0 mg (70%) of 2b. 2b: ¹H NMR (CDCl₃, 400 MHz): δ = 8.77-8.75 (m, 1H), 7.82-7.73 (m, 3H), 7.60 (s, 1H), 7.50-7.48 (m, 1H), 7.35-7.31 (m, 1H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 155.2, 149.8, 140.7, 139.1, 136.7, 134.4, 133.7, 129.8, 123.0, 118.9, 110.7, 20.8 ppm; IR (neat): ν = 3065.3, 2224.6, 1585.7, 1562.7, 1462.9, 1439.2, 1152.9, 761.6 cm⁻¹; MS (EI) m/z 194.2 (100) [M⁺].

4-(Pyridin-2-yl)-[1,1′-biphenyl]-3-carbonitrile (2c)²

The reaction of CuBr (114.8 mg, 0.8 mmol), 2-([1,1′-biphenyl]-4-yl)pyridine 1c (92.5 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 59.8 mg (59%) of 2c. 2c: ¹H NMR (CDCl₃, 400 MHz): δ = 8.79 (d, J = 4.4 Hz, 1H), 8.00 (d, J = 2.0 Hz, 1H), 7.95-7.88 (m, 2H), 7.84 (d, J = 3.6 Hz, 2H), 7.63-7.61 (m, 2H), 7.51-7.48 (m, 2H) 7.45-7.42 (m, 1H) 7.37-7.34 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ = 154.8, 149.9, 141.9, 138.3, 136.8, 132.5, 131.3, 130.4, 129.1, 128.5, 127.0, 123.3, 123.1, 118.7, 111.4 ppm; IR (neat): ν = 2225.2, 1763.2, 1585.3, 1464.4, 1242.7, 762.0 cm⁻¹; MS (EI) m/z 256.1 (100) [M⁺].

5-Bromo-2-(pyridin-2-yl)benzonitrile (2d)³

The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(4-bromophenyl)pyridine 1d (93.6 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 52.5 mg (51%) of 2d. 2d: ¹H NMR (CDCl₃, 400 MHz): δ = 8.74 (d, J = 4.4 Hz, 1H), 7.89 (d, J = 2.0 Hz, 1H), 7.84-7.71 (m, 4H), 7.36-7.33 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ = 154.1, 149.9, 142.1, 136.9, 136.3, 136.0, 131.3, 123.5, 122.9, 122.5, 117.2, 112.6 ppm; MS (EI) m/z 258.0 (100) [M⁺].

5-Chloro-2-(pyridin-2-yl)benzonitrile (2e)²
The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(4-chlorophenyl)pyridine 1e (75.6 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 44.0 mg (52%) of 2e. 2e: ¹H NMR (CDCl₃, 400 MHz): δ = 8.77 (d, J = 4.8 Hz, 1H), 7.86-7.77 (m, 4H), 7.66 (dd, J = 8.4 Hz, J = 2.0, 1H), 7.39-7.36 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ = 154.1, 150.0, 141.8, 136.9, 134.9, 133.6, 133.1, 131.3, 123.6, 123.0, 117.4, 112.4 ppm; IR (neat): ν = 2228.1, 1591.1, 1460.8, 1430.2, 1097.9, 860.0, 783.7 cm⁻¹; MS (EI) m/z 214.0 (100) [M⁺].

5-Fluoro-2-(pyridin-2-yl)benzonitrile (2f)

The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(4-fluorophenyl)pyridine 1f (69.3 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 54.1 mg (43%) of 2f. 2f: ¹H NMR (CDCl₃, 400 MHz): δ = 8.76 (s, 1H), 7.87-7.75 (m, 3H), 7.49 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H), 7.43-7.34 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ = 161.9 (d, J₉,F = 250.3 Hz), 154.1, 149.8, 139.8, 136.8, 132.0 (d, J₉,F = 8.1 Hz), 123.3, 122.9, 120.6 (d, J₉,F = 24.7 Hz), 120.4 (d, J₉,F = 20.4 Hz), 117.4, 112.3 (d, J₉,F = 9.1 Hz) ppm; IR (neat): ν = 3737.0, 3069.0, 2230.5, 1609.0, 1583.0, 1428.0, 1275.9, 1263.2, 1152.2, 884.4, 784.6 cm⁻¹; MS (EI) m/z 198.3 (100) [M⁺].

Methyl 3-cyano-4-(pyridin-2-yl)benzoate (2g)

The reaction of CuBr (114.8 mg, 0.8 mmol), methyl 4-(pyridin-2-yl)benzoate 1g (85.3 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 16.4 mg (17%) of 2g. 2g: ¹H NMR (CDCl₃, 400 MHz): δ = 8.80 (d, J = 4.8 Hz, 1H), 8.46 (d, J = 2.0 Hz, 1H), 8.31 (dd, J = 4.0, 1.6 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.89-7.82 (m, 2H), 7.41-7.38 (m, 1H), 3.98 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 165.0, 154.2, 150.11, 146.9, 137.0, 135.3, 133.5, 130.7, 130.2, 123.9, 123.4, 117.8, 111.4, 52.7 ppm; MS (EI) m/z 238.1 (100) [M⁺].
5-Ethoxy-2-(pyridin-2-yl)benzonitrile (2h)

The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(4-ethoxyphenyl)pyridine 1h (79.7 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 49.0 mg (58%) of 2h. 2h: ¹H NMR (CDCl₃, 400 MHz): δ = 8.73 (d, J = 4.0 Hz, 1H), 7.81-7.73 (m, 3H), 7.31-7.25 (m, 2H), 7.20-7.18 (m, 1H), 4.09 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 158.8, 154.9, 149.6, 136.6, 135.7, 131.2, 122.64, 122.61, 119.6, 118.9, 118.6, 111.5, 64.0, 14.4 ppm; IR (neat): ν = 2982.4, 2225.0, 1769.4, 1603.6, 1464.4, 1241.9, 1045.9, 786.5 cm⁻¹; HRMS m/z (ESI) calcd. for C₁₄H₁₃N₂O (M + H)⁺ 225.1028, found 225.1018.

4-Ethoxy-2-(pyridin-2-yl)benzonitrile (2i)

The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(3-ethoxyphenyl)pyridine 1i (79.7 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 46.6 mg (52%) of 2i. 2i: ¹H NMR (CDCl₃, 400 MHz): δ = 8.75 (d, J = 3.2 Hz, 1H), 7.84-7.80 (m, 2H), 7.69 (d, J = 8.8 Hz, 1H), 7.34 (s, 2H), 6.98 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 162.2, 155.2, 149.8, 145.4, 136.7, 135.6, 123.3, 123.2, 119.1, 115.6, 115.2, 102.3, 64.0, 14.5 ppm; IR (neat): ν = 2982.9, 2219.3, 1796.4, 1603.7, 1463.0, 1307.2, 1239.7, 1404.6, 762.0 cm⁻¹; HRMS m/z (ESI) calcd. for C₁₄H₁₃N₂O (M + H)⁺ 225.1028, found 225.1019.

3-Ethoxy-2-(pyridin-2-yl)benzonitrile (2j)

The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(2-ethoxyphenyl)pyridine 1j (79.7 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 52.9 mg (59%) of 2j. 2j: ¹H NMR (CDCl₃, 400 MHz): δ = 8.77 (d, J = 4.4 Hz, 1H), 7.93-7.75 (m, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.43-7.30 (m, 3H), 7.19 (d, J = 8.4 Hz, 1H), 4.04 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 156.4, 153.1, 149.4, 135.8, 133.3, 129.9, 125.5, 125.4, 122.9, 118.0, 116.7, 114.0, 64.7, 14.4 ppm; IR (neat): ν = 2982.2,
The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(4-(tert-butyl)phenyl)pyridine 1k (84.5 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 48.2 mg (51 %) of 2k. 2k: ¹H NMR (CDCl₃, 400 MHz): δ = 8.76 (d, J = 4.0 Hz, 1H), 7.83-7.77 (m, 4H), 7.72-7.70 (m, 1H), 7.34-7.31 (m, 1H), 1.37 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ = 155.2, 152.3, 149.8, 140.6, 136.7, 131.0, 129.7, 123.01, 122.97, 119.2, 110.6, 34.7, 30.9 ppm; IR (neat): ν = 2964.2, 2868.0, 2222.8, 1584.7, 1461.8, 1364.6, 1272.5, 842.3, 790.5 cm⁻¹; HRMS m/z (ESI) calcd. for C₁₄H₁₃N₂O (M + H)+ 237.1392, found 237.1381.

The reaction of CuBr (114.8 mg, 0.8 mmol), 5-methyl-2-phenylpyridine 1l (67.7 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 44.3 mg (57 %) of 2l. 2l: ¹H NMR (CDCl₃, 400 MHz): δ = 8.60 (s, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.69-7.62 (m, 3H), 7.50-7.46 (m, 1H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 152.5, 150.4, 143.5, 137.2, 134.0, 133.1, 132.7, 129.8, 128.4, 122.6, 118.8, 110.9, 18.2 ppm; IR (neat): ν = 2224.7, 1764.9, 1471.6, 1377.2, 1243.0, 775.9, 758.0 cm⁻¹; MS (EI) m/z 194.0 (100) [M]+.

The reaction of CuBr (114.8 mg, 0.8 mmol), 3-methyl-2-phenylpyridine 1m (67.7 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 39.6 mg (51 %) of 2m. 2m: ¹H NMR (CDCl₃, 400 MHz): δ = 8.57 (d, J = 4.4 Hz, 1H), 7.79-7.77 (m, 1H), 7.70-7.64
(m, 2H), 7.53-7.49 (m, 2H), 7.28 (dd, $J = 8.0$ Hz, $J = 4.8$ Hz, 1H), 2.27 (s, 3H); 13C NMR (CDCl$_3$, 100 MHz): $\delta = 155.5$, 147.2, 144.4, 138.5, 133.0, 132.6, 131.6, 130.0, 128.4, 123.5, 117.8, 112.5, 19.0 ppm; IR (neat): $\nu = 2925.1$, 2226.5, 1763.8, 1440.2, 1424.7, 1736.5, 1443.1, 1051.7, 762.8 cm$^{-1}$; MS (El) m/z 193.2 (100) [M]$^+$.

1-(Pyridin-2-yl)-2-naphthonitrile (2n)2

The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(naphthalen-1-yl)pyridine 1n (82.1 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (1 mL) under O$_2$ (1 atm) afforded 41.4 mg (45%) of 2n. 2n: 1H NMR (CDCl$_3$, 400 MHz): $\delta = 8.86$ (d, $J = 4.8$ Hz, 1H), 7.98-7.90 (m, 3H), 7.71 (d, $J = 8.4$ Hz, 2H), 7.65-7.59 (m, 2H), 7.54-7.50 (m, 1H), 7.47-7.44 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz): $\delta = 155.2$, 150.0, 144.4, 136.7, 135.0, 131.1, 129.4, 128.7, 128.3, 127.9, 126.8, 126.7, 125.6, 123.5, 118.5, 109.7 ppm; IR (neat): $\nu = 2994.3$, 2228.0, 1769.4, 1585.7, 1469.7, 1383.1, 1243.2, 811.7, 745.6 cm$^{-1}$; MS (El) m/z 229.0 (100) [M]$^+$.

2-(Isoquinolin-1-yl)benzonitrile (2o)4

The reaction of CuBr (114.8 mg, 0.8 mmol), 1-phenylisoquinoline 1o (82.1 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O$_2$ (1 atm) afforded 32.2 mg (35%) of 2o. 2o: 1H NMR (CDCl$_3$, 400 MHz): $\delta = 8.67$ (d, $J = 5.6$ Hz, 1H), 7.92 (d, $J = 8.0$ Hz, 1H), 7.86 (d, $J = 7.6$ Hz, 1H), 7.76-7.70 (m, 4H), 7.66 (d, $J = 7.2$ Hz, 1H), 7.61-7.54 (m, 2H); 13C NMR (CDCl$_3$, 100 MHz): $\delta = 157.0$, 143.0, 142.2, 136.7, 133.4, 132.3, 130.9, 130.4, 128.8, 127.8, 127.2, 126.8, 126.4, 121.3, 117.7, 113.2 ppm; IR (neat): $\nu = 2225.6$, 1585.3, 1570.0, 1449.5, 1029.0, 792.5, 730.2 cm$^{-1}$; MS (El) m/z 230.0 (100) [M]$^+$.

Benzo[h]quinoline-10-carbonitrile (2p)2
The reaction of CuBr (114.8 mg, 0.8 mmol), benzo[h]quinoline 1p (71.7 mg, 0.4 mmol), 1,3-diphenyl-1,3-propanedione (44.9 mg, 0.2 mmol) in DMF (3 mL) under O₂ (1 atm), afforded 35.9 mg (44%) of 2p.

2p: ¹H NMR (CDCl₃, 400 MHz): δ = 9.14-9.13 (m, 1H), 8.21 (dd, J = 8 Hz, J = 1.6 Hz, 1H), 8.16-8.10 (m, 2H), 7.83-7.70 (m, 3H), 7.62 (dd, J = 8.0 Hz, J = 4.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ = 148.4, 144.5, 136.2, 135.7, 134.0, 132.7, 130.7, 127.4, 127.2, 127.0, 126.9, 123.0, 120.7, 108.9 ppm; IR (neat): ν = 3434.9, 2210.6, 1619.2, 1511.0, 1424.0, 832.2, 717.0 cm⁻¹; MS (EI) m/z 204.3 (100) [M⁺].

3-(Pyridin-2-yl)-2-naphthonitrile (2q)² and 2-(pyridin-2-yl)-1-naphthonitrile (2q')²

The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(naphthalen-2-yl)pyridine 1q (82.1 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 58.0 mg (63%) 2q and 2q’ as a mixture (2q:2q’ = 2.7:1).

2-(Pyridin-2-yl)naphthalene-1,3-dicarbonitrile (2r)²

The reaction of CuBr (114.8 mg, 0.8 mmol), 2-(naphthalen-2-yl)pyridine 1r (82.1 mg, 0.4 mmol), benzil (21.0 mg, 0.1 mmol) in DMF (3 mL) under O₂ (1 atm) afforded 12.7 mg (12%) of 2r. 2r: ¹H NMR (CDCl₃, 400 MHz): δ = 8.89 (d, J = 4.4 Hz, 1H), 8.57 (s, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.98-7.90 (m, 2H), 7.83-7.78 (m, 2H), 7.5045 (dd, J = 7.2, 5.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ = 152.9, 150.3, 144.1, 139.7, 137.0, 133.7, 132.1, 131.4, 129.4, 129.0, 126.1, 124.9, 124.5, 116.8, 115.4, 111.7, 110.5; MS (EI) m/z 255.1 (100) [M⁺].
References:
