Supporting Information

Copper-catalyzed Tandem Trifluoromethylation/Cyclization of Internal Alkynes

Yun-Long Ji, a Jin-Hong Lin, a* Ji-Chang Xiao a* and Yu-Cheng Gu b

a Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
Dr. Jin-Hong Lin
Tel: (+86) 21-5492-5380; E-mail: jlin@sioc.ac.cn.
Prof. Ji-Chang Xiao
Fax: (+86) 21-6416-6128; Tel: (+86)21-5492-5340; E-mail: jchxiao@sioc.ac.cn.
bSyngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK

Contents

1. General Information...S2
2. General Procedure for the Preparation of Internal AlkynesS2
3. General Procedure for the Trifluoromethylation of Alkynes...........
S10
4. Procedure for the synthesis of 3, 4, 5..S20
5. Crystal Data and Structure Refinement for 2h............................S24
6. Copies of NMR Spectra..S25
1. General Information

1H, 13C and 19F NMR spectra were detected on a 500 MHz, 400 MHz or 300 MHz NMR spectrometer. Data for 1H NMR, 13C NMR and 19F NMR were recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, coupling constant (s) in Hz). Mass spectra were obtained on a GC-MS. High resolution mass data were recorded on a high resolution mass spectrometer in the EI or ESI mode.

2. General Procedure for the Preparation of Internal Alkynes.

Internal Alkynes were synthesized according to the procedure reported in literature.1

![1a](image1.png)

4,4'-(But-1-yne-1,4-diyl)bis(methoxybenzene) (1a): 52%; white solid.

1H NMR (400 MHz, CDCl$_3$) δ 7.31 (d, $J = 8.6$ Hz, 2H), 7.19 (d, $J = 8.3$ Hz, 2H), 6.85 (d, $J = 8.4$ Hz, 2H), 6.81 (d, $J = 8.6$ Hz, 2H), 3.80 (s, 6H), 2.86 (t, $J = 7.5$ Hz, 2H), 2.64 (t, $J = 7.5$ Hz, 2H).

The spectra match spectra from previous report.1

![1b](image2.png)

1-Methoxy-4-(4-(4-phenoxyphenyl)but-1-yn-1-yl)benzene (1b): 31%; yellow oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.34 – 7.25 (m, 4H), 7.20 (d, $J = 8.5$ Hz, 2H), 7.05 (t, $J = 7.4$ Hz, 1H), 6.98 (d, $J = 8.6$ Hz, 2H), 6.94 (d, $J = 8.5$ Hz, 2H), 6.78 (d, $J = 8.8$ Hz, 2H), 3.74 (s, 3H), 2.86 (t, $J = 7.4$ Hz, 2H), 2.64 (t, $J = 7.4$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 159.18, 157.62, 155.61, 135.86, 132.93, 129.92, 129.79, 123.09, 119.04, 118.68, 116.02, 113.92, 87.92, 81.33, 55.27, 34.62, 21.92.

IR(KBr): 3036, 2930, 2835, 1589, 1505, 1486, 1233, 829, 691 cm$^{-1}$.

HRMS (EI):calcd. For [C$_{23}$H$_{20}$O$_2$] 328.1463, found 328.1467.
1-Methoxy-2-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1c): 40%; yellow oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.29 (d, $J = 8.6$ Hz, 2H), 7.23 – 7.16 (m, 2H), 6.89 (t, $J = 7.4$ Hz, 1H), 6.83 (d, $J = 8.0$ Hz, 1H), 6.78 (d, $J = 8.6$ Hz, 2H), 3.80 (s, 3H), 3.75 (s, 3H), 2.92 (t, $J = 7.6$ Hz, 2H), 2.65 (t, $J = 7.6$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 159.01, 157.48, 132.89, 130.28, 129.07, 127.63, 120.34, 116.22, 113.81, 110.21, 88.61, 80.71, 55.24, 55.21, 30.26, 19.93.

IR(KBr): 3000, 2933, 2835, 1604, 1507, 1240, 1030, 830, 751 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{18}$H$_{18}$O$_2$] 266.1307, found 266.1310.

4-Fluoro-1-methoxy-2-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1d): 38%; yellow oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.29 (d, $J = 8.8$ Hz, 2H), 6.95 (dd, $J = 9.0$, 3.0 Hz, 1H), 6.86 (td, $J = 8.5$, 3.1 Hz, 1H), 6.78 (d, $J = 8.8$ Hz, 2H), 6.72 (dd, $J = 8.9$, 4.5 Hz, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 2.87 (t, $J = 7.4$ Hz, 2H), 2.64 (t, $J = 7.4$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 159.09, 156.77 (d, $J = 237.7$ Hz), 153.57 (d, $J = 1.9$ Hz), 132.87, 130.72 (d, $J = 7.2$ Hz), 117.00 (d, $J = 23.0$ Hz), 116.02, 113.83, 113.12 (d, $J = 22.6$ Hz), 110.86 (d, $J = 8.3$ Hz), 88.01, 81.07, 55.74, 55.19, 29.98 (d, $J = 1.1$ Hz), 19.64.

IR(KBr): 2955, 2836, 1606, 1496, 1244, 1216, 1031, 830, 802, 708 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{18}$H$_{17}$FO$_2$] 284.1213, found 284.1216.
1-Methoxy-4-(4-(p-tolyl)but-1-yn-1-yl)benzene (1e): 27%; white solid; M.P.: 60 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.31 (d, $J = 8.7$ Hz, 2H), 7.16 (d, $J = 8.0$ Hz, 2H), 7.12 (d, $J = 8.2$ Hz, 2H), 6.81 (d, $J = 8.7$ Hz, 2H), 3.79 (s, 3H), 2.87 (t, $J = 7.6$ Hz, 2H), 2.65 (t, $J = 7.6$ Hz, 2H), 2.33 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 159.04, 137.76, 135.73, 132.84, 129.03, 128.39, 116.01, 113.79, 88.02, 80.89, 55.24, 34.91, 21.86, 21.05.

IR(KBr): 2923, 1606, 1508, 1288, 1243, 1171, 1033, 830, 806 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{18}$H$_{18}$O] 250.1358, found 250.1360.

1-(4-(4-Methoxyphenyl)but-3-yn-1-yl)-2-methylbenzene (1f): 31%; yellow oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.31 (d, $J = 8.8$ Hz, 2H), 7.24 – 7.19 (m, 1H), 7.18 – 7.09 (m, 3H), 6.80 (d, $J = 8.8$ Hz, 2H), 3.77 (s, 3H), 2.92 (t, $J = 7.7$ Hz, 2H), 2.64 (t, $J = 7.7$ Hz, 2H), 2.35 (s, 3H).

The spectra match spectra from previous report.1

1-(tert-Butyl)-4-(4-(methoxyphenyl)but-3-yn-1-yl)benzene (1g): 61%; white solid; M.P.: 78 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.27 (m, 4H), 7.20 (d, $J = 8.0$ Hz, 2H), 6.80 (d, $J = 8.5$ Hz, 2H), 3.78 (s, 3H), 2.89 (t, $J = 7.6$ Hz, 2H), 2.66 (t, $J = 7.6$ Hz, 2H), 1.31 (s, 9H).
13C NMR (101 MHz, CDCl$_3$) δ 159.08, 149.05, 137.81, 132.87, 128.18, 125.28, 116.06, 113.83, 88.16, 80.91, 55.24, 34.85, 34.42, 31.43, 21.70.

IR(KBr): 2958, 2905, 1606, 1508, 1244, 1033, 829 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{21}$H$_{24}$O] 292.1827, found 292.1831.

4-(4-(4-Methoxyphenyl)but-3-yn-1-yl)-1,1'-biphenyl (1h): 56%; white solid; M.P.: 109 ºC.

1H NMR (400 MHz, CDCl$_3$) δ 7.59 (d, J = 7.8 Hz, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.40 – 7.27 (m, 5H), 6.81 (d, J = 8.3 Hz, 2H), 3.80 (s, 3H), 2.96 (t, J = 7.3 Hz, 2H), 2.71 (t, J = 7.3 Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 159.13, 141.07, 139.93, 139.26, 132.87, 128.99, 128.73, 127.11, 127.09, 127.04, 115.99, 113.85, 87.84, 81.15, 55.26, 34.95, 21.68.

IR(KBr): 3000, 2925, 2855, 1602, 1503, 1241, 1171, 1031, 826, 760, 734, 694 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{23}$H$_{20}$O] 312.1514, found 312.1513.

1-Methoxy-4-(4-phenylbut-1-yn-1-yl)benzene (1i): 50%; yellow solid.

1H NMR (400 MHz, CDCl$_3$) δ 7.34 – 7.20 (m, 7H), 6.81 (d, J = 8.7 Hz, 2H), 3.80 (s, 3H), 2.92 (t, J = 7.6 Hz, 2H), 2.68 (t, J = 7.6 Hz, 2H).

The spectra match spectra from previous report.1
1-(4-(4-Methoxyphenyl)but-3-yn-1-yl)naphthalene (1j): 26%; yellow oil.

\[\text{1H NMR (400 MHz, CDCl}_3 \delta 8.09 (d, J = 8.3 \text{ Hz}, 1H), 7.86 (d, J = 7.8 \text{ Hz}, 1H), 7.74 (t, J = 4.6 \text{ Hz}, 1H), 7.55 – 7.45 (m, 2H), 7.42 (d, J = 4.9 \text{ Hz}, 2H), 7.29 (d, J = 8.7 \text{ Hz}, 2H), 6.80 (d, J = 8.7 \text{ Hz}, 2H), 3.78 (s, 3H), 3.39 (t, J = 7.7 \text{ Hz}, 2H), 2.82 (t, J = 7.7 \text{ Hz}, 2H).} \]

The spectra match spectra from previous report.\(^1\)

1-Fluoro-4-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1k): 40%; white solid.

\[\text{1H NMR (400 MHz, CDCl}_3 \delta 7.29 (d, J = 8.7 \text{ Hz}, 2H), 7.22 (dd, J = 8.3, 5.5 \text{ Hz}, 2H), 6.99 (t, J = 8.7 \text{ Hz}, 2H), 6.81 (d, J = 8.7 \text{ Hz}, 2H), 3.79 (s, 3H), 2.87 (t, J = 7.4 \text{ Hz}, 2H), 2.65 (t, J = 7.4 \text{ Hz}, 2H).} \]

The spectra match spectra from previous report.\(^1\)

1-Chloro-4-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1l): 19%; white solid; M.P.: 58 °C.

\[\text{1H NMR (400 MHz, CDCl}_3 \delta 7.29 (d, J = 6.6 \text{ Hz}, 2H), 7.27 (d, J = 6.3 \text{ Hz}, 2H), 7.20 (d, J = 8.3 \text{ Hz}, 2H), 6.81 (d, J = 8.7 \text{ Hz}, 2H), 3.80 (s, 3H), 2.87 (t, J = 7.3 \text{ Hz}, 2H), 2.65 (t, J = 7.3 \text{ Hz}, 2H).} \]

\[\text{13C NMR (101 MHz, CDCl}_3 \delta 159.17, 139.19, 132.84, 132.06, 129.95, 128.44, 115.82, 113.86, 87.37, 81.37, 55.27, 34.56, 21.58.} \]

\[\text{IR(KBr): 2927, 2854, 2541, 2150, 1602, 1504, 1243, 1087, 832, 813 cm}^{-1}. \]

\[\text{HRMS (El): calcld. For [C}_{17}\text{H}_{15}\text{ClO}] 270.0811, \text{ found 270.0810.} \]
1-Bromo-4-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1m): 42%; white solid.

1H NMR (400 MHz, CDCl$_3$) δ 7.43 (d, $J = 8.3$ Hz, 2H), 7.29 (d, $J = 8.8$ Hz, 2H), 7.15 (d, $J = 8.3$ Hz, 2H), 6.81 (d, $J = 8.8$ Hz, 2H), 3.80 (s, 3H), 2.86 (t, $J = 7.3$ Hz, 2H), 2.65 (t, $J = 7.4$ Hz, 2H).

The spectra match spectra from previous report.1

1-Bromo-2-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1n): 7%; yellow oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.55 (dd, $J = 8.0$, 1.1 Hz, 1H), 7.38 – 7.26 (m, 4H), 7.09 (td, $J = 7.7$, 1.7 Hz, 1H), 6.81 (d, $J = 8.8$ Hz, 2H), 3.80 (s, 3H), 3.04 (t, $J = 7.4$ Hz, 2H), 2.71 (t, $J = 7.4$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 159.13, 139.86, 132.87, 132.80, 130.87, 128.08, 127.34, 124.41, 115.93, 113.83, 87.36, 81.25, 55.26, 35.52, 19.87.

IR(KBr): 2956, 2931, 2836, 1606, 1508, 1468, 1440, 1244, 1027, 830, 749 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{17}$H$_{15}$BrO] 314.0306, found 314.0311.

1-Methoxy-3-(4-(4-methoxyphenyl)but-1-yn-1-yl)benzene (1o): 19%; yellow oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.22 – 7.14 (m, 3H), 6.97 (d, $J = 7.6$ Hz, 1H), 6.91 (d, $J = 2.0$ Hz, 1H), 6.88 – 6.76 (m, 3H), 3.78 (s, 3H), 3.77 (s, 3H), 2.86 (t, $J = 7.4$ Hz, 2H), 2.64 (t, $J = 7.5$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 159.29, 158.18, 132.86, 129.50, 129.25, 124.93, 124.09, 116.48, 114.20, 113.82, 89.56, 81.27, 55.27, 55.23, 34.32, 21.99.
IR (KBr): 3030, 2997, 2851, 1604, 1581, 1510, 1316, 1243, 1036, 825, 779 cm\(^{-1}\).
HRMS (EI): calcd. For [C\(_{18}\)H\(_{18}\)O\(_2\)] 266.1307, found 266.1302.

![Chemical Structure 1](1p)

1-Methoxy-2-(4-(4-methoxyphenyl)but-1-yn-1-yl)benzene (1p): 24%; yellow oil.
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.34 (dd, \(J = 7.5, 1.5\) Hz, 1H), 7.26 – 7.16 (m, 3H), 6.89 – 6.80 (m, 4H), 3.85 (s, 3H), 3.77 (s, 3H), 2.88 (t, \(J = 7.5\) Hz, 2H), 2.71 (t, \(J = 7.5\) Hz, 2H).
\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.84, 158.10, 133.67, 133.00, 129.55, 129.02, 120.41, 113.75, 112.96, 110.53, 93.86, 77.93, 55.76, 55.25, 34.43, 22.41.
IR (KBr): 2996, 2929, 2834, 1611, 1512, 1492, 1242, 1177, 1026, 820, 750 cm\(^{-1}\).
HRMS (EI): calcd. For [C\(_{18}\)H\(_{18}\)O\(_2\)] 266.1307, found 266.1305.

![Chemical Structure 2](1q)

4-(4-(4-Methoxyphenyl)but-1-yn-1-yl)-N,N-dimethylaniline (1q): 14%; M.P.: 68 °C
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.26 (d, \(J = 8.7\) Hz, 2H), 7.19 (d, \(J = 8.6\) Hz, 2H), 6.85 (d, \(J = 8.6\) Hz, 2H), 6.61 (d, \(J = 8.8\) Hz, 2H), 3.79 (s, 3H), 2.95 (s, 6H), 2.85 (t, \(J = 7.5\) Hz, 2H), 2.63 (t, \(J = 7.5\) Hz, 2H).
\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 158.08, 149.76, 133.20, 132.49, 129.51, 113.76, 111.94, 111.03, 86.97, 81.79, 55.27, 40.31, 34.67, 22.14.
IR (KBr): 2995, 2918, 2850, 1883, 1604, 1510, 1336, 1236, 1181, 1034, 814, 628 cm\(^{-1}\).
HRMS (EI): calcd. For [C\(_{19}\)H\(_{21}\)NO] 279.1623, found 279.1621.

![Chemical Structure 3](1r)

1-Methoxy-4-(4-phenylbut-3-yn-1-yl)benzene (1r): 45%; red oil.
1H NMR (400 MHz, CDCl$_3$) δ 7.37 (dd, $J = 6.5, 3.1$ Hz, 2H), 7.29 – 7.22 (m, 3H), 7.17 (d, $J = 8.6$ Hz, 2H), 6.84 (d, $J = 8.6$ Hz, 2H), 3.76 (s, 3H), 2.85 (t, $J = 7.4$ Hz, 2H), 2.64 (t, $J = 7.4$ Hz, 2H).

The spectra match spectra from previous report.2

![Image](is.png)

1-Chloro-4-(4-(4-methoxyphenyl)but-1-yn-1-yl)benzene (1s): 8%; white solid; M.P.: 40 $^\circ$C.

1H NMR (400 MHz, CDCl$_3$) δ 7.32 – 7.22 (m, 4H), 7.18 (d, $J = 8.4$ Hz, 2H), 6.85 (d, $J = 8.5$ Hz, 2H), 3.80 (s, 3H), 2.85 (t, $J = 7.4$ Hz, 2H), 2.64 (t, $J = 7.4$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 158.17, 133.54, 132.77, 131.41, 129.49, 128.52, 122.38, 113.80, 90.72, 80.27, 55.28, 34.19, 21.99.

IR (KBr): 3016, 2960, 2917, 1609, 1510, 1301, 1240, 1177, 1031, 827, 765 cm$^{-1}$.

HRMS (EI): calcld. For [C$_{17}$H$_{15}$ClO] 270.0811, found 270.0812.

![Image](it.png)

1-Methoxy-4-(3-phenoxyprop-1-yn-1-yl)benzene (1t): 76%; white solid.

1H NMR (400 MHz, CDCl$_3$) δ 7.37 (d, $J = 8.8$ Hz, 2H), 7.30 (t, $J = 8.0$ Hz, 2H), 7.03 (d, $J = 8.0$ Hz, 2H), 6.98 (t, $J = 7.3$ Hz, 0.85 Hz, 1H), 6.81 (d, $J = 8.9$ Hz, 2H), 4.89 (s, 2H), 3.78 (s, 3H).

The spectra match spectra from previous report.1

![Image](iu.png)
1-(4-(4-(2-chloroethoxy)phenyl)but-3-yn-1-yl)-3-methoxybenzene (1u): 52%; white solid.

1H NMR (400 MHz, CDCl$_3$) δ 7.31 (d, $J = 8.3$ Hz, 2H), 7.25 – 7.18 (m, 1H), 6.91 – 6.68 (m, 5H), 4.21 (t, $J = 5.4$ Hz, 2H), 3.86 – 3.74 (m, 5H), 2.89 (t, $J = 7.5$ Hz, 2H), 2.67 (t, $J = 7.7$ Hz, 2H).

The spectra match spectra from previous report.1

Procedure A: CuTc (3.8mg, 0.02 mmol), Umemoto’s reagent (60.3mg, 0.15 mmol), 2,2’-Dipyridyl (12.5mg, 0.08mmol), internal alkynes (0.1 mmol), and DCE (1 mL) were added sequentially to a flame-dried tube under argon. The tube was then sealed and the resulting mixture was stirred at 80 °C. When the reaction was completed, as monitored by 19F NMR, the crude reaction mixture was filtered through a short pad of silica gel eluted with CH$_2$Cl$_2$. After evaporation of the solvent, the residue was purified by chromatography on silica gel (eluent: petroleum ether/dichloromethane) to afford the desired product.

Procedure B: CuTc (3.8mg, 0.02 mmol), Umemoto’s reagent (60.3mg, 0.15 mmol), 2,2’-Dipyridyl (12.5mg, 0.08mmol), internal alkynes (0.1 mmol), MeOH (0.1ml) and DCE (1 mL) were added sequentially to a flame-dried tube under argon. The tube was then sealed and the resulting mixture was stirred at 80 °C. When the reaction was completed, as monitored by 19F NMR, the crude reaction mixture was filtered through a short pad of silica gel eluted with CH$_2$Cl$_2$. After evaporation, the residue was purified by chromatography on silica gel (eluent: petroleum ether/dichloromethane) to afford the desired product.

Obtained according to General Procedure B:

![Image of chemical structure]

6-Methoxy-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronapthalene (2a): 82%; white solid; M.P.: 59 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.16 – 7.05 (m, 3H), 6.92 (d, $J = 8.5$ Hz, 2H), 6.75 (dd, $J = 8.1$, 2.2 Hz, 1H), 6.29 (d, $J = 2.0$ Hz, 1H), 3.84 (s, 3H), 3.62 (s, 3H), 2.87 (t, $J = 7.9$ Hz, 2H), 2.58 (t, $J = 7.8$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -59.12 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 157.91, 157.14, 140.63 (q, $J = 4.1$ Hz), 135.28, 129.10 (q, $J = 1.8$ Hz), 128.05, 127.18, 126.92, 124.02 (q, $J = 28.6$ Hz), 123.30 (q, $J = 275.3$ Hz), 113.37, 112.39, 112.14, 54.15, 54.13, 25.76, 21.87 (q, $J = 2.5$ Hz).

IR(KBr): 3002, 2837, 1607, 1510, 1269, 1170, 1096, 1034, 832, 787 cm$^{-1}$.

HRMS (EI):calcd. For [C$_{19}$H$_7$F$_3$O$_2$] 334.1181, found 334.1183.
Obtained according to General Procedure A:

![2b](image)

4-(4-Methoxyphenyl)-6-phenoxy-3-(trifluoromethyl)-1,2-dihydronaphthalene (2b): 75%; colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.31 – 7.25 (m, 2H), 7.13 (d, $J = 8.1$ Hz, 1H), 7.11 – 7.00 (m, 3H), 6.94 – 6.85 (m, 4H), 6.80 (dd, $J = 8.1$, 2.3 Hz, 1H), 6.47 (d, $J = 2.2$ Hz, 1H), 3.82 (s, 3H), 2.92 (t, $J = 8.0$ Hz, 2H), 2.62 (t, $J = 7.8$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -59.24 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 159.07, 157.27, 155.54, 141.48 (q, $J = 3.9$ Hz), 136.90, 131.05, 130.08 (q, $J = 1.0$ Hz), 129.63, 128.81, 128.26, 125.24 (q, $J = 28.7$ Hz), 124.32 (q, $J = 272.8$ Hz), 122.98, 119.23, 118.83, 118.25, 113.57, 55.19, 27.02, 22.80 (q, $J = 2.2$ Hz).

IR(KBr): 2955, 2920, 1485, 1234, 1219, 1169, 1098, 830, 815, 690 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{24}$H$_{19}$F$_3$O$_2$] 396.1337, found 396.1333.

Obtained according to General Procedure B:

![2c](image)

8-Methoxy-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (2c): 58%; yellow solid; M.P.: 90 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.08 (d, $J = 8.5$ Hz, 2H), 7.02 (t, $J = 8.0$ Hz, 1H), 6.92 (d, $J = 8.4$ Hz, 2H), 6.83 (d, $J = 8.2$ Hz, 1H), 6.34 (d, $J = 7.8$ Hz, 1H), 3.85 (s, 1H), 3.84 (s, 3H), 2.94 (t, $J = 8.2$ Hz, 2H), 2.56 (t, $J = 8.2$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -59.18 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 158.96, 155.76, 141.65 (q, $J = 3.9$ Hz), 136.31, 130.23 (q, $J = 1.4$ Hz), 129.63, 126.50, 124.69 (q, $J = 28.6$ Hz), 124.42 (q, $J = 271.4$ Hz), 124.34, 120.49, 113.37, 111.20, 55.68, 55.20, 21.98 (q, $J = 2.1$ Hz), 19.78.

IR(KBr): 2957, 2839, 1510, 1245, 1150, 1097, 834 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{19}$H$_{17}$F$_3$O$_2$] 334.1181, found 334.1180.

Obtained according to General Procedure A:
5-Fluoro-8-methoxy-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (2d): 57%; white solid; M.P.: 110 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.12 (d, $J = 8.5$ Hz, 2H), 6.87 (d, $J = 8.5$ Hz, 2H), 6.80 (dd, $J = 9.0, 3.7$ Hz, 1H), 6.76 – 6.69 (m, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 2.86 (t, $J = 7.3$ Hz, 2H), 2.48 (t, $J = 7.3$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -57.98 (s, 3F), -117.66 (d, $J = 10.9$ Hz, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 158.84, 155.28 (d, $J = 248.1$ Hz), 151.60 (d, $J = 2.1$ Hz), 138.95 (qd, $J = 4.0, 1.0$ Hz), 130.75 (d, $J = 3.5$ Hz), 129.45 – 129.27 (m), 127.45, 126.79 (q, $J = 8.7$ Hz), 124.17 (q, $J = 273.1$ Hz), 123.80 (d, $J = 8.1$ Hz), 114.50 (d, $J = 25.1$ Hz), 112.93, 112.53 (d, $J = 8.9$ Hz), 56.08, 55.11, 22.19 (q, $J = 2.8$ Hz), 20.98 (d, $J = 1.8$ Hz).

IR(KBr): 2963, 2916, 2839, 1608, 1475, 1241, 1148, 1084, 811 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{19}$H$_{16}$F$_4$O$_2$] 352.1086, found 352.1085.

Obtained according to General Procedure A:

Obtained according to General Procedure A:

4-(4-Methoxyphenyl)-6-methyl-3-(trifluoromethyl)-1,2-dihydronaphthalene (2e): 64%; colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.11 – 7.06 (m, 3H), 7.02 (d, $J = 7.6$ Hz, 1H), 6.94 (d, $J = 8.7$ Hz, 2H), 6.51 (s, 1H), 3.85 (s, 3H), 2.89 (t, $J = 7.9$ Hz, 2H), 2.57 (t, $J = 7.9$ Hz, 2H), 2.16 (s, 3H).

19F NMR (376 MHz, CDCl$_3$) δ -58.97 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 158.90, 141.86 (q, $J = 4.0$ Hz), 136.05, 135.07, 133.11, 130.18 (q, $J = 1.9$ Hz), 129.39, 129.32, 128.39, 127.16, 124.53 (q, $J = 28.5$ Hz), 124.40 (q, $J = 274.2$ Hz), 113.38, 55.17, 27.34, 22.72 (q, $J = 2.6$ Hz), 21.16.

IR(KBr): 2927, 1509, 1243, 1030, 828, 785 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{19}$H$_{17}$F$_3$O] 318.1231, found 318.1232.

Obtained according to General Procedure A:
4-(4-Methoxyphenyl)-8-methyl-3-(trifluoromethyl)-1,2-dihydronaphthalene (2f): 64%; white solid; M.P.: 70 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.12 – 7.04 (m, 3H), 7.00 – 6.89 (m, 3H), 6.57 (d, J = 7.6 Hz, 1H), 3.84 (s, 3H), 2.88 (t, J = 7.9 Hz, 2H), 2.59 (t, J = 7.8 Hz, 2H), 2.33 (s, 3H).

19F NMR (376 MHz, CDCl$_3$) δ -59.12 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 158.91, 142.03 (q, J = 4.0 Hz), 135.17, 134.65, 134.49, 130.82, 130.22 (q, J = 1.9 Hz), 129.67, 125.94, 125.77, 124.39 (q, J = 272.4 Hz), 123.92 (q, J = 28.7 Hz), 113.35, 55.20, 48.97 (q, J = 2.6 Hz), 19.55.

IR(KBr): 2957, 2930, 1608, 1510, 1314, 1149, 1089, 833 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{19}$H$_{17}$F$_3$O] 318.1231, found 318.1229.

Obtained according to General Procedure A:

6-(Tert-butyl)-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (2g): 68%; colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.24 (d, J = 8.5 Hz, 1H), 7.15 – 7.07 (m, 3H), 6.94 (d, J = 8.1 Hz, 2H), 6.76 (s, 1H), 3.86 (s, 3H), 2.91 (t, J = 7.9 Hz, 2H), 2.59 (t, J = 7.9 Hz, 2H), 1.13 (s, 9H).

19F NMR (376 MHz, CDCl$_3$) δ -58.97 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 158.95, 149.43, 142.21 (q, J = 4.0 Hz), 134.86, 133.20, 130.24 (q, J = 1.9 Hz), 129.42, 126.94, 125.64, 125.06, 124.49 (q, J = 273.4 Hz), 124.27 (q, J = 28.5 Hz), 113.34, 55.20, 34.46, 31.18, 27.25, 22.72 (q, J = 2.5 Hz).

IR(KBr): 2961, 1609, 1510, 1150, 1098, 831, 739, 621 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{22}$H$_{23}$F$_3$O] 360.1701, found 360.1703.

Obtained according to General Procedure A:
4-(4-Methoxyphenyl)-6-phenyl-3-(trifluoromethyl)-1,2-dihydronaphthalene (2h): 74%; white solid; M.P.: 98 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.43 (dd, \(J = 7.7, 1.7\) Hz, 1H), 7.37 – 7.30 (m, 4H), 7.29 – 7.23 (m, 2H), 7.13 (d, \(J = 8.5\) Hz, 2H), 6.96 – 6.91 (m, 3H), 3.83 (s, 3H), 2.97 (t, \(J = 7.9\) Hz, 2H), 2.63 (t, \(J = 7.9\) Hz, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -59.06 (s, 3F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.00, 141.84 (q, \(J = 4.0\) Hz), 140.78, 139.69, 135.68, 135.20, 130.20 (q, \(J = 1.9\) Hz), 129.06, 128.72, 127.75, 127.49, 127.19, 126.94, 126.56, 124.96 (q, \(J = 28.7\) Hz), 124.36 (q, \(J = 272.3\) Hz), 113.53, 55.19, 27.45, 22.64 (q, \(J = 2.6\) Hz).

IR (KBr): 2952, 2927, 2836, 1644, 1607, 1510, 1318, 1245, 1143, 1084, 1030, 831, 760, 692 cm\(^{-1}\).

HRMS (EI): calcld. For \([C_{24}H_{19}F_3O]\) 380.1388, found 380.1389.

Obtained according to General Procedure A:

4-(4-Methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (2i): 73%; white solid; M.P.: 71 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.23 – 7.16 (m, 2H), 7.12 – 7.03 (m, 3H), 6.93 (d, \(J = 8.7\) Hz, 2H), 6.71 (d, \(J = 7.8\) Hz, 1H), 3.85 (s, 3H), 2.94 (t, \(J = 7.8\) Hz, 2H), 2.60 (t, \(J = 7.8\) Hz, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -59.12 (s, 3F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.00, 141.78 (q, \(J = 4.0\) Hz), 140.78, 139.69, 135.68, 135.20 (q, \(J = 1.9\) Hz), 129.27, 128.76, 127.77, 127.27, 126.54, 124.53 (q, \(J = 28.7\) Hz), 124.36 (q, \(J = 272.3\) Hz), 113.44, 55.20, 27.73, 22.55 (q, \(J = 2.6\) Hz).

IR (KBr): 3001, 2923, 2849, 1609, 1510, 1433, 1244, 1147, 1096, 1034, 826, 773 cm\(^{-1}\);

HRMS (EI): calcld. For \([C_{18}H_{15}F_3O]\) 304.1075, found 304.1078.

Obtained according to General Procedure A:
1-(4-Methoxyphenyl)-2-(trifluoromethyl)-3,4-dihydrophenanthrene (2j): 46%; white solid; M.P.: 147 °C.

1H NMR (400 MHz, CDCl$_3$) δ 8.10 (d, $J = 8.4$ Hz, 1H), 7.77 (d, $J = 8.0$ Hz, 1H), 7.58 - 7.51 (m, 2H), 7.47 (t, $J = 7.4$ Hz, 1H), 7.12 (d, $J = 8.6$ Hz, 2H), 6.95 (d, $J = 8.5$ Hz, 2H), 6.88 (d, $J = 8.7$ Hz, 1H), 3.86 (s, 3H), 3.37 (t, $J = 8.4$ Hz, 2H), 2.72 (t, $J = 8.3$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -58.91 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 159.07, 142.31 (q, $J = 4.1$ Hz), 133.59, 132.48, 132.17, 130.68, 130.29 (q, $J = 2.0$ Hz), 129.66, 128.53, 126.44, 126.31, 126.22, 125.18, 124.46 (q, $J = 274.7$ Hz), 124.02, 123.90 (q, $J = 28.1$ Hz), 113.56, 55.22, 23.14, 22.27 (q, $J = 2.8$ Hz).

IR(KBr): 2958, 2921, 2850, 1605, 1508, 1316, 1273, 1151, 1091, 822, 757 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{22}$H$_{17}$F$_3$O] 354.1231, found 354.1234.

Obtained according to General Procedure A:

6-Fluoro-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (2k): 70%; white solid; M.P.: 74 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.14 (dd, $J = 8.0$, 5.9 Hz, 1H), 7.08 (d, $J = 8.6$ Hz, 2H), 6.94 (d, $J = 8.7$ Hz, 2H), 6.89 (td, $J = 8.2$, 2.5 Hz, 1H), 6.42 (dd, $J = 10.4$, 2.4 Hz, 1H), 3.85 (s, 3H), 2.90 (t, $J = 8.0$ Hz, 2H), 2.60 (t, $J = 7.9$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -59.39 (s, 3F), -115.61 ~ -115.70 (m, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 161.55 (d, $J = 243.1$ Hz), 159.15, 141.04 (qd, $J = 3.7$, 1.9 Hz), 137.05 (d, $J = 7.4$ Hz), 131.48 (d, $J = 2.9$ Hz), 130.07 (q, $J = 1.9$ Hz), 128.55, 128.38 (d, $J = 7.7$ Hz), 125.69 (q, $J = 28.9$ Hz), 124.15 (q, $J = 274.5$ Hz), 115.16 (d, $J = 21.5$ Hz), 114.70 (d, $J = 23.6$ Hz), 113.61, 55.19, 26.89, 22.69 (q, $J = 2.5$ Hz).

IR(KBr): 2958, 2922, 2846, 1609, 1511, 1316, 1246, 1170, 1000, 790 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{18}$H$_{14}$F$_3$O] 322.0981, found 322.0979.

Obtained according to General Procedure A:
6-Chloro-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (2l): 61%; yellow solid; M.P.: 80 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.18 (dd, $J = 7.9$, 1.4 Hz, 1H), 7.12 (d, $J = 8.0$ Hz, 1H), 7.07 (d, $J = 8.5$ Hz, 2H), 6.95 (d, $J = 8.4$ Hz, 2H), 6.67 (d, $J = 1.0$ Hz, 1H), 3.86 (s, 3H), 2.90 (t, $J = 7.9$ Hz, 2H), 2.59 (t, $J = 7.9$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -59.35 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 159.23, 140.97 (q, $J = 4.0$ Hz), 136.94, 134.37, 132.37, 130.13 (q, $J = 1.8$ Hz), 128.57, 128.50, 128.38, 127.66, 125.83 (q, $J = 28.9$ Hz), 124.12 (q, $J = 273.6$ Hz), 113.71, 55.50, 27.12, 22.51 (q, $J = 2.5$ Hz).

IR(KBr): 2954, 2839, 1609, 1510, 1314, 1266, 1150, 1096, 819, 779 cm$^{-1}$.

HRMS (EI):calcd. For [C$_{18}$H$_{14}$ClF$_3$O] 338.0685, found 338.0680.

Obtained according to General Procedure A:

6-Bromo-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (2m): 67%; white solid; M.P.: 102 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.33 (dd, $J = 8.0$, 1.7 Hz, 1H), 7.10 – 7.05 (m, 3H), 6.95 (d, $J = 8.5$ Hz, 2H), 6.83 (d, $J = 1.3$ Hz, 1H), 3.87 (s, 3H), 2.89 (t, $J = 8.0$ Hz, 2H), 2.60 (t, $J = 8.0$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -59.34 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 159.24, 140.89 (q, $J = 4.0$ Hz), 137.29, 134.90, 131.56, 130.50, 130.13 (q, $J = 1.9$ Hz), 128.84, 128.32, 125.86 (q, $J = 28.9$ Hz), 124.09 (q, $J = 273.6$ Hz), 120.33, 113.72, 55.23, 27.21, 22.43 (q, $J = 2.6$ Hz).

IR(KBr): 2957, 2886, 1771, 1067, 1035, 925, 835 cm$^{-1}$.

HRMS (EI):calcd. For [C$_{18}$H$_{14}$BrF$_3$O] 382.0180, found 382.0182.

Obtained according to General Procedure A:
8-Bromo-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (2n): 42%; yellow oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.45 (d, $J = 8.0$ Hz, 1H), 7.07 (d, $J = 8.5$ Hz, 2H), 6.96 – 6.87 (m, 3H), 6.66 (d, $J = 7.7$ Hz, 1H), 3.85 (s, 3H), 3.08 (t, $J = 8.0$ Hz, 2H), 2.62 (t, $J = 7.9$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -59.41 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 159.17, 141.28 (q, $J = 4.0$ Hz), 137.44, 135.63, 132.88, 130.22 (q, $J = 1.9$ Hz), 128.83, 127.45, 127.19, 125.32 (q, $J = 29.0$ Hz), 124.05 (d, $J = 273.5$ Hz), 123.69, 113.58, 55.23, 27.21, 22.11 (q, $J = 2.5$ Hz).

IR(KBr): 2957, 2841, 1608, 1510, 1441, 1340, 1245, 1152, 1100, 828 cm$^{-1}$.

HRMS (EI):calcd. For [C$_{18}$H$_{14}$BrF$_3$O] 382.0180, found 382.0179.

Obtained according to General Procedure B:

6-Methoxy-4-(3-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (2o): 35%; yellow oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.30 (t, $J = 8.2$ Hz, 1H), 7.12 (d, $J = 8.2$ Hz, 1H), 6.90 (dd, $J = 8.3$, 2.5 Hz, 1H), 6.82 – 6.66 (m, 3H), 6.30 (d, $J = 2.6$ Hz, 1H), 3.80 (s, 3H), 3.63 (s, 3H), 2.89 (t, $J = 8.0$ Hz, 2H), 2.59 (t, $J = 8.0$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -59.47 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 159.26, 158.26, 141.63 (q, $J = 4.0$ Hz), 138.32 (s), 135.79, 129.06, 128.13, 128.01, 124.87 (q, $J = 28.9$ Hz), 124.26 (q, $J = 273.5$ Hz), 121.50 (q, $J = 1.6$ Hz), 114.50, 113.24, 55.23, 26.80, 22.86 (q, $J = 2.5$ Hz).

IR(KBr): 3002, 2941, 1605, 1574, 1315, 1211, 1164, 1099, 1042, 812, 732, 704 cm$^{-1}$.

HRMS (EI):calcd. For [C$_{19}$H$_{17}$F$_3$O$_2$] 334.1181, found 334.1179.

Obtained according to General Procedure B:
6-Methoxy-4-(2-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (2p): 57%; yellow oil.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.34 (td, \(J = 8.3, 1.7\) Hz, 1H), 7.11 (d, \(J = 8.2\) Hz, 1H), 7.05 (dd, \(J = 7.4, 1.6\) Hz, 1H), 7.01 – 6.90 (m, 2H), 6.75 (dd, \(J = 8.2, 2.5\) Hz, 1H), 6.26 (d, \(J = 2.3\) Hz, 1H), 3.72 (s, 3H), 3.62 (s, 3H), 2.95 – 2.83 (m, 2H), 2.68 – 2.48 (m, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -61.61 (s, 3F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 158.34, 156.91 (q, \(J = 1.4\) Hz), 138.47 (q, \(J = 4.2\) Hz), 135.53, 130.37 (q, \(J = 1.8\) Hz), 129.28, 128.19, 127.93, 126.06, 125.47 (q, \(J = 28.8\) Hz), 124.36 (q, \(J = 273.3\) Hz), 120.31, 113.64, 113.03, 110.82, 55.65, 55.17, 26.83, 22.92 (q, \(J = 2.2\) Hz).

IR(KBr): 3002, 2941, 2837, 1601, 1574, 1315, 1169, 1146, 1096, 1068, 754 cm\(^{-1}\).

HRMS (EI): calcd. For [C\(_{19}\)H\(_{17}\)F\(_3\)O\(_2\)] 334.1181, found 334.1177.

Obtained according to General Procedure B:

\[
\begin{array}{c}
\text{MeO} \\
\text{N} \\
\text{CF}_3
\end{array}
\]

4-(7-Methoxy-2-(trifluoromethyl)-3,4-dihydronaphthalen-1-yl)-N,N-dimethylaniline (2q): 32%; yellow oil.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.10 (d, \(J = 8.2\) Hz, 1H), 7.03 (d, \(J = 8.6\) Hz, 2H), 6.81 – 6.70 (m, 3H), 6.37 (d, \(J = 2.2\) Hz, 1H), 3.63 (s, 3H), 3.00 (s, 6H), 2.86 (t, \(J = 7.9\) Hz, 2H), 2.57 (t, \(J = 7.9\) Hz, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -58.99 (s, 3F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 158.20, 149.56, 142.26 (q, \(J = 4.1\) Hz), 136.78, 129.86 (q, \(J = 2.0\) Hz), 129.62, 128.40, 127.86, 124.66 (q, \(J = 28.3\) Hz), 124.52 (q, \(J = 273.4\) Hz), 114.66, 113.02, 112.08, 55.26, 40.70, 26.93, 23.00 (q, \(J = 2.4\) Hz).

IR(KBr): 2940, 2837, 1611, 1572, 1521, 1365, 1315, 1196, 1143, 1044, 945, 818 cm\(^{-1}\).

HRMS (EI): calcd. For [C\(_{20}\)H\(_{20}\)F\(_3\)N\(_2\)] 347.1497, found 347.1501.

Obtained according to General Procedure B:

\[
\begin{array}{c}
\text{MeO} \\
\text{CF}_3
\end{array}
\]

6-Methoxy-4-phenyl-3-(trifluoromethyl)-1,2-dihydronaphthalene (2r): 45%; yellow oil.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.44 – 7.33 (m, 3H), 7.19 (d, \(J = 7.4\) Hz, 2H), 7.13 (d, \(J = 8.2\) Hz, 1H), 6.77 (d, \(J = 7.8\) Hz, 1H), 6.26 (s, 1H), 3.62 (s, 3H), 2.90 (t, \(J = 7.8\) Hz, 2H), 2.61 (t, \(J = 7.9\) Hz, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -59.33 (s, 3F).
13C NMR (101 MHz, CDCl$_3$) δ 158.26, 141.88 (q, $J = 4.0$ Hz), 137.03, 135.99, 128.97 (q, $J = 2.0$ Hz), 128.18, 128.01, 127.59, 124.96 (q, $J = 28.8$ Hz), 124.30 (q, $J = 273.5$ Hz), 114.45, 113.35, 55.17, 26.83, 22.89 (q, $J = 2.4$ Hz).

IR(KBr): 2932, 2839, 1607, 1573, 1494, 1313, 1171, 1099, 700 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{18}$H$_{15}$F$_3$O] 304.1075, found 304.1079.

Obtained according to General Procedure A:

![Diagram](image)

4-(4-Methoxyphenyl)-3-(trifluoromethyl)-2H-chromene (2t): 34%; white oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.22 (d, $J = 7.7$ Hz, 1H), 7.13 (d, $J = 8.3$ Hz, 2H), 7.02 – 6.91 (m, 3H), 6.84 (t, $J = 7.5$ Hz, 1H), 6.73 (d, $J = 7.6$ Hz, 1H), 4.89 (s, 2H), 3.85 (s, 3H).

19F NMR (376 MHz, CDCl$_3$) δ -59.07 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 159.55, 154.60, 140.46 (q, $J = 4.0$ Hz), 131.25, 130.12 (q, $J = 1.8$ Hz), 128.12, 126.64, 124.00, 122.84 (q, $J = 272.8$ Hz), 121.78, 117.33 (q, $J = 29.8$ Hz), 116.11, 113.64, 63.20 (q, $J = 3.6$ Hz), 55.25.

IR(KBr): 2923, 2851, 1608, 1511, 1341, 1247, 1101, 829 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{17}$H$_{13}$F$_3$O$_2$] 306.0868, found 306.0869.

Compounds 2a' was obtained according to general procedure B except that EtOH was used instead of MeOH:

![Diagram](image)

6-Ethoxy-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihyronaphthalene (2a'): yellow oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.13 – 7.05 (m, 3H), 6.92 (d, $J = 8.7$ Hz, 2H), 6.74 (dd, $J = 8.2$, 2.4 Hz, 1H), 6.28 (d, $J = 2.3$ Hz, 1H), 3.88 – 3.79 (m, 5H), 2.87 (t, $J = 7.9$ Hz, 2H), 2.58 (t, $J = 8.0$ Hz, 2H), 1.29 (t, $J = 7.0$ Hz, 3H).

19F NMR (376 MHz, CDCl$_3$) δ -59.12 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 158.99, 157.61, 141.77 (q, $J = 4.0$ Hz), 136.30, 130.19 (d, $J = 1.9$ Hz), 129.19, 128.14, 127.94, 125.04 (q, $J = 28.5$ Hz), 124.38 (q, $J = 273.4$ Hz), 114.98, 113.94, 113.47, 63.43, 55.21, 26.87, 22.95 (q, $J = 2.5$ Hz), 14.71.
IR (KBr): 2978, 2929, 2847, 1608, 1511, 1315, 1245, 1179, 1101, 833 cm⁻¹.
HRMS (EI): calcd. For \([C_{20}H_{19}F_3O_2]\) 348.1337, found 348.1332.

Compound \(2a''\) was prepared according to general procedure B except that iPrOH was used instead of MeOH:

6-Isopropoxy-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydrornaphthalene (\(2a''\)): yellow oil.

\(^1\)H NMR (400 MHz, CDCl₃) \(\delta 7.16 – 7.02 (m, 3H), 6.93 (d, J = 8.6 Hz, 2H), 6.74 (dd, J = 8.2, 2.3 Hz, 1H), 6.26 (d, J = 2.1 Hz, 1H), 4.29 (sept, J = 5.6 Hz, 1H), 3.85 (s, 3H), 2.86 (t, J = 7.8 Hz, 2H), 2.58 (t, J = 7.9 Hz, 2H), 1.20 (d, J = 6.0 Hz, 6H).

\(^1\)F NMR (376 MHz, CDCl₃) \(\delta -59.12 (s, 3F)\).

\(^{13}\)C NMR (101 MHz, CDCl₃) \(\delta 158.91, 156.40, 141.73 (q, J = 3.8 Hz), 136.28, 130.13 (q, J = 1.2 Hz), 129.17, 128.02, 127.90, 124.88 (q, J = 28.8 Hz), 124.34 (q, J = 273.0 Hz), 116.23, 115.37, 113.40, 69.80, 55.19, 26.82, 22.91 (q, J = 2.2 Hz), 21.85.

IR (KBr): 2975, 2931, 2839, 1608, 1510, 1314, 1245, 1175, 1098, 830 cm⁻¹.

HRMS (EI): calcd. For \([C_{21}H_{21}F_3O_2]\) 362.1494, found 362.1493.

Into the solution of \(2a\) (33.4 mg, 0.1 mmol) in toluene (3.0 mL) was added DDQ (25.0 mg, 0.11 mmol). The resulting mixture was refluxed for 12 h. The reaction was quenched with sat. NaHCO₃ at room temperature. The mixture was extracted with CH₂Cl₂. The combined organic phase was washed with brine and then dried over MgSO₄. The solvent was removed by concentration. The residue was subjected to flash column chromatography to give the desired product 3 as a white solid:

7-Methoxy-1-(4-methoxyphenyl)-2-(trifluoromethyl)naphthalene (3): 92%; white solid; M.P.: 101 °C.

\(^1\)H NMR (400 MHz, CDCl₃) \(\delta 7.85 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 8.9 Hz, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.25 – 7.19 (m, 3H), 7.01 (d, J = 8.6 Hz, 2H), 6.72 (s, 1H), 3.90 (s, 3H), 3.65 (s, 3H)
19F NMR (376 MHz, CDCl$_3$) δ -56.31 (s, 3F).
13C NMR (101 MHz, CDCl$_3$) δ 159.16, 158.24, 138.31 (q, $J = 2.2$ Hz), 134.99, 131.20 (d, $J = 1.2$ Hz), 130.17, 129.32, 129.08, 127.60, 126.70 (q, $J = 28.8$ Hz), 124.53 (q, $J = 274.4$ Hz), 120.32, 119.56 (q, $J = 5.1$ Hz), 113.33, 105.87, 55.24, 55.12.
IR(KBr): 2959, 2924, 2852, 1622, 1609, 1512, 1461, 1339, 1223, 1120, 1034, 843 cm$^{-1}$.
HRMS (EI): calcd. For [C$_{19}$H$_{15}$F$_3$O$_2$] 332.1024, found 332.1023.

Into the solution of 2a (33.4mg, 0.1mmol) in ethanol (1 mL) was added 15% Pd/C. The reaction mixture was stirred at room temperature for overnight under H$_2$ atmosphere. After filtration followed by concentration, the residue was purified by flash chromatography to give the product 4.

![Image of molecule 4]

7-Methoxy-1-(4-methoxyphenyl)-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene (4): quantitative yield; colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.09 (d, $J = 8.5$ Hz, 1H), 6.96 (d, $J = 8.6$ Hz, 2H), 6.81 – 6.64 (m, 3H), 6.43 (d, $J = 2.5$ Hz, 1H), 4.40 (d, $J = 4.6$ Hz, 1H), 3.75 (s, 3H), 3.65 (s, 3H), 3.09 - 3.00 (m, 1H), 2.98 – 2.82 (m, 1H), 2.78 – 2.61 (m, 1H), 2.11 – 1.90 (m, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -68.16 (d, $J = 9.4$ Hz, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 158.34, 157.98, 139.22, 133.43, 131.30, 129.77, 127.31 (q, $J = 279.6$ Hz), 127.23, 114.59, 113.67, 113.22, 55.18, 55.11, 44.21 (q, $J = 25.4$ Hz), 43.23 (q, $J = 1.8$ Hz), 27.45, 17.22 (q, $J = 2.5$ Hz).

IR(KBr): 2954, 2917, 2839, 1611, 1507, 1254, 1096, 1035, 814 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{19}$H$_{19}$F$_3$O$_2$] 336.1337, found 336.1339.

Procedure for the synthesis of 5:

![Image of reaction scheme]
4-(4-(2-Chloroethoxy)phenyl)-7-methoxy-3-(trifluoromethyl)-1,2-dihydronaphthalene (2u):
colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.09 (d, $J = 8.6$ Hz, 2H), 6.94 (d, $J = 8.6$ Hz, 2H), 6.74 (d, $J = 1.7$ Hz, 1H), 6.64 – 6.54 (m, 2H), 4.26 (t, $J = 5.8$ Hz, 2H), 3.84 (t, $J = 5.9$ Hz, 2H), 3.78 (s, 3H), 2.91 (t, $J = 7.9$ Hz, 2H), 2.58 (t, $J = 7.9$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -58.68 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 160.01, 157.58, 141.37 (q, $J = 4.1$ Hz), 138.10, 130.41, 130.30 (q, $J = 1.8$ Hz), 129.31, 128.23, 124.57 (q, $J = 273.0$ Hz), 121.98 (q, $J = 28.7$ Hz), 114.18, 113.35, 111.26, 68.00, 55.29, 41.96, 28.22, 22.52 (q, $J = 2.6$ Hz).

IR(KBr): 2920, 2851, 1607, 1244, 1149, 1069, 801, 737 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{20}$H$_{18}$ClF$_3$O$_2$] 382.0947, found 382.0945.

Into the solution of 2u (38.2mg, 0.1mmol) in ethanol (0.5mL) was added pyrrolidine (0.5 mL). The resulting mixture was stirred at 100°C for 4 h. After evaporation, the residue was purified by flash chromatography to give the pure Nafoxidine analogue 5.

4-(4-(2-Chloroethoxy)phenyl)-5-methoxy-3-(trifluoromethyl)-1,2-dihydronaphthalene (2u'): white solid; M.P.: 95 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.19 (t, $J = 7.9$ Hz, 1H), 7.09 (d, $J = 8.6$ Hz, 2H), 6.87 – 6.81 (m, 3H), 6.67 (d, $J = 8.3$ Hz, 1H), 4.25 (t, $J = 6.0$ Hz, 2H), 3.83 (t, $J = 5.9$ Hz, 2H), 3.22 (s, 3H), 2.81 (t, $J = 7.7$ Hz, 2H), 2.46 (t, $J = 7.7$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -57.22 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 157.88, 156.83, 140.89 (q, $J = 3.9$ Hz), 139.98, 133.40, 129.88, 129.48 (q, $J = 2.1$ Hz), 125.53 (q, $J = 28.4$ Hz), 124.64, 124.41 (q, $J = 273.2$ Hz), 119.90, 113.17, 111.85, 68.04, 55.57, 42.01, 29.32, 22.80 (q, $J = 2.8$ Hz).

IR(KBr): 3002, 2922, 2849, 1666, 1569, 1509, 1243, 1146, 1068, 831 cm$^{-1}$.

HRMS (EI): calcd. For [C$_{20}$H$_{18}$ClF$_3$O$_2$] 382.0947, found 382.0944.
1-(2-(4-(6-Methoxy-2-(trifluoromethyl)-3,4-dihydronaphthalen-1-yl)phenoxy)ethyl)pyrrolidine (5): 82%; colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.05 (d, $J = 8.5$ Hz, 2H), 6.91 (d, $J = 8.6$ Hz, 2H), 6.72 (d, $J = 1.2$ Hz, 1H), 6.63 – 6.46 (m, 2H), 4.22 (t, $J = 5.6$ Hz, 2H), 3.77 (s, 3H), 3.04 (t, $J = 5.3$ Hz, 2H), 2.89 (t, $J = 7.8$ Hz, 2H), 2.86 – 2.72 (m, 4H), 2.56 (t, $J = 7.8$ Hz, 2H), 1.96 – 1.82 (m, 4H).

19F NMR (376 MHz, CDCl$_3$) δ -58.69 (s, 3F).

13C NMR (101 MHz, CDCl$_3$) δ 159.98, 157.89, 141.43 (q, $J = 4.5$ Hz), 138.07, 130.19, 129.96, 129.36, 128.30, 124.58 (q, $J = 271.9$ Hz), 121.89 (q, $J = 28.6$ Hz), 114.04, 113.32, 111.23, 66.24, 55.29, 54.90, 54.68, 58.24, 28.24, 23.48, 22.51 (q, $J = 2.5$ Hz).

IR(KBr): 2960, 2934, 1608, 1510, 1246, 1149, 1096, 1069, 1036, 833, 804 cm$^{-1}$.

HRMS (ESI): calcd. For [C$_{24}$H$_{27}$F$_3$NO$_2$] [M+H]$^+$ 418.1988, found 418.1990.

References
5. Crystal data and structure refinement for 2h.

Empirical formula \(\text{C}_{22} \text{H}_{19} \text{F}_{3} \text{O} \)

Formula weight 380.39

Temperature 293(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P -1

Unit cell dimensions
\[a = 5.3668(8) \text{ Å} \quad \alpha = 82.874(3)^\circ. \]
\[b = 9.6287(15) \text{ Å} \quad \beta = 86.417(4)^\circ. \]
\[c = 18.804(3) \text{ Å} \quad \gamma = 82.471(4)^\circ. \]

Volume 954.8(3) Å\(^3\)

Z 2

Density (calculated) 1.323 Mg/m\(^3\)

Absorption coefficient 0.099 mm\(^{-1}\)

F(000) 396

Crystal size 0.211 x 0.143 x 0.078 mm\(^3\)

Theta range for data collection 2.148 to 25.994°

Index ranges -6<=h<=5, -10<=k<=11, -23<=l<=22

Reflections collected 5822

Independent reflections 3747 [R(int) = 0.0342]

Completeness to theta = 25.242° 99.8 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7457 and 0.4299

Refinement method Full-matrix least-squares on F\(^2\)

Data / restraints / parameters 3747 / 0 / 254

Goodness-of-fit on F\(^2\) 1.053

Final R indices [I>2sigma(I)] R1 = 0.0619, wR2 = 0.1801

R indices (all data) R1 = 0.0872, wR2 = 0.2022

Extinction coefficient n/a

Largest diff. peak and hole 0.368 and -0.253 e.Å\(^{-3}\)

1H NMR spectrum of compound 1a
\[^1H \text{NMR spectrum of compound 1b} \]
13C NMR spectrum of compound 1b
1H NMR spectrum of compound 1c
13C NMR spectrum of compound 1c
1H NMR spectrum of compound 1d
13C NMR spectrum of compound 1d
1H NMR spectrum of compound 1e
13C NMR spectrum of compound 1e
1H NMR spectrum of compound 1f
1H NMR spectrum of compound 1g
13C NMR spectrum of compound 1g
1H NMR spectrum of compound 1h
13C NMR spectrum of compound $1h$
1H NMR spectrum of compound i
\(^1\text{H NMR spectrum of compound } \textit{lj}\)
1H NMR spectrum of compound 1k
1H NMR spectrum of compound II
13C NMR spectrum of compound II
1H NMR spectrum of compound 1m
1H NMR spectrum of compound 1n
13C NMR spectrum of compound \textbf{In}
1H NMR spectrum of compound 10
13C NMR spectrum of compound 10
1H NMR spectrum of compound 1p
13C NMR spectrum of compound 1p
1H NMR spectrum of compound 1q
13C NMR spectrum of compound $1q$
1H NMR spectrum of compound 1r
1H NMR spectrum of compound 1s
13C NMR spectrum of compound 1s
1H NMR spectrum of compound 1t
1H NMR spectrum of compound 1u
^{1}H NMR spectrum of compound 2a
19F NMR spectrum of compound 2a
13C NMR spectrum of compound 2a
1H NMR spectrum of compound 2b
19F NMR spectrum of compound 2b
13C NMR spectrum of compound $2b$
1H NMR spectrum of compound 2c
19F NMR spectrum of compound 2c
13C NMR spectrum of compound 2c
1H NMR spectrum of compound 2d
19F NMR spectrum of compound 2d
13C NMR spectrum of compound 2d
1H NMR spectrum of compound 2e
19F NMR spectrum of compound 2e
13C NMR spectrum of compound 2e
1H NMR spectrum of compound 2f
19F NMR spectrum of compound 2f
13C NMR spectrum of compound 2f
1H NMR spectrum of compound 2g
19F NMR spectrum of compound 2g
13C NMR spectrum of compound 2g
1H NMR spectrum of compound $2h$
^{19}F NMR spectrum of compound 2h
13C NMR spectrum of compound 2h
1H NMR spectrum of compound 2i
19F NMR spectrum of compound 2i
13C NMR spectrum of compound 2i
1H NMR spectrum of compound 2j
19F NMR spectrum of compound 2j
\textbf{13C NMR spectrum of compound 2j}
1H NMR spectrum of compound 2k
19F NMR spectrum of compound 2k
13C NMR spectrum of compound 2k
1H NMR spectrum of compound 21
19F NMR spectrum of compound 21
13C NMR spectrum of compound 21
1H NMR spectrum of compound 2m
19F NMR spectrum of compound 2m
13C NMR spectrum of compound 2m
1H NMR spectrum of compound 2n
19F NMR spectrum of compound 2n
13C NMR spectrum of compound 2n
1H NMR spectrum of compound 2o
19F NMR spectrum of compound 2o
13C NMR spectrum of compound 20
1H NMR spectrum of compound 2p
$^{19}\text{F} \text{ NMR spectrum of compound 2p}$
13C NMR spectrum of compound 2p
1H NMR spectrum of compound 2q
19F NMR spectrum of compound 2q
13C NMR spectrum of compound 2q
1H NMR spectrum of compound 2r
19F NMR spectrum of compound 2r
13C NMR spectrum of compound 2r
1H NMR spectrum of compound 2t
19F NMR spectrum of compound 2t
13C NMR spectrum of compound 2t
^{1}H NMR spectrum of compound 2a'
19F NMR spectrum of compound 2a'
13C NMR spectrum of compound 2a'
1H NMR spectrum of compound 2a''
19F NMR spectrum of compound 2a"
13C NMR spectrum of compound 2a$''$
1H NMR spectrum of compound 3
19F NMR spectrum of compound 3
13C NMR spectrum of compound 3
1H NMR spectrum of compound 4
19F NMR spectrum of compound 4
13C NMR spectrum of compound 4
1H NMR spectrum of compound **2u**
^{19}F NMR spectrum of compound 2u
13C NMR spectrum of compound 2u
1H NMR spectrum of compound 2u'}
$^{19}\text{F} \text{ NMR spectrum of compound } 2u'$
13C NMR spectrum of compound $2u'$
1H NMR spectrum of compound 5
19F NMR spectrum of compound 5
13C NMR spectrum of compound 5