Supplementary Information

Monoalkylation of amines with light electrophiles using a flow microreactor system

Thomas LEBLEU, Jacques MADDALUNO, Julien LEGROS

General remarks:

1H NMR spectra were obtained on a Bruker 300. In all measurements CDCl$_3$ was used as solvent unless otherwise noted. Chemical shifts δ are given in ppm relative to TMS as internal standard. Coupling constants J are measured in Hz. Microflow reactions were performed with Harvard Apparatus syringe pumps (Pump 11 Elite) equipped with Hamilton gastight syringes (1 mL). Peek (P-885) and stainless steel (U-428) T-shaped micromixers with swept volume respectively of 29 nL and 570 nL were manufactured by IDEX Health & Science. Peek (1532) and stainless steel (U-137) microtubes with inner diameter respectively of 500 µm and 762 µm and fittings (PTFE and stainless steel) were also purchased from IDEX Health & Science. All chemicals were used as provided without further purification. Propyl, Allyl and propargyl triflate were freshly prepared according to the literature.1,2 The conversion of amine into products was measured by 1H NMR spectra directly from the crude product for benzylamine and aniline derivatives.

Experimental procedures:

![Flow microreactor system for the alkylation of amines: general depiction (up); picture of the system used for alkylation with ROTf (R = Et, Pr, allyl and propargyl; Table 2, entries 1-14)](image)

Figure S1: Flow microreactor system for the alkylation of amines: general depiction (up); picture of the system used for alkylation with ROTf (R = Et, Pr, allyl and propargyl; Table 2, entries 1-14)

<table>
<thead>
<tr>
<th>Material</th>
<th>Ø (mm)</th>
<th>Length (cm)</th>
<th>V (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Stainless Steel</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>M’1</td>
<td>Stainless Steel</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>M2</td>
<td>Stainless Steel</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>R1</td>
<td>Stainless Steel</td>
<td>0.762</td>
<td>47</td>
</tr>
<tr>
<td>R’1</td>
<td>Stainless Steel</td>
<td>0.508</td>
<td>12</td>
</tr>
<tr>
<td>M, M’</td>
<td>PEEK</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>PEEK</td>
<td>0.5</td>
<td>24</td>
</tr>
<tr>
<td>R’</td>
<td>PEEK</td>
<td>0.5</td>
<td>3</td>
</tr>
</tbody>
</table>

Table S1: Features of the micromixers and -reactor used for the alkylation of amines (R > Me, Stainless steel; R = Me, PEEK)
Typical procedure for ethylation of benzylamine

(all syringes were filled with the reagents and the corresponding quantity of MeNO₂ to obtain a total volume of 1 mL). Syringe 1 (S1, 1 mL) was filled with benzylamine (88 µL, 0.8 mmol), 2,6-lutidine (18.5 µL, 0.2 mmol) in MeNO₂. Syringe 2 (S2, 1 mL) was filled with EtOTf (164 µL, 1.2 mmol) in MeNO₂. Syringe 3 (S3, 1 mL) was filled with 2,6-lutidine (74.1 µL, 0.6 mmol) and MeNO₂. Syringe (S4, 1 mL) contained a solution of aq. HCl 6 N. Micromixers (M) and microreactors (R) were immersed in a hot bath at 80 °C. Solutions in S1 and S2 were introduced into M1 (V = 570 nL, Ø = 0.5 mm) (flow rate = 707 µL/min) and passed through R1 (V = 220 µL). The resulting solution was reacted with 2,6-lutidine (S3) in M’1 (V = 570 nL, Ø = 0.5 mm) (flow rate = 707 µL/min) and passed through trough R’1 (V = 23 µL) and finally the reaction was quenched by HCl (S4) in M2 (flow rate = 707 µL/min) and collected in a flask. Volatiles were evaporated under vacuum and a few drops of a solution of aq. NaOH 2 N until pH > 9 was reached. The solution was extracted with CH₂Cl₂ (×3) and the combined organic layers were dried on MgSO₄, filtrated and evaporated under vacuum. The crude product was analyzed by ¹H NMR.

Typical procedure for methylation of dibenzylamine

(all syringes were filled with the reagents and the corresponding quantity of MeNO₂ to obtain a total volume of 1 mL). Syringe 1 (S1) was filled with dibenzylamine (157 µL, 0.8 mmol), 2,6-lutidine (18.5 µL, 0.2 mmol) and MeNO₂. Syringe 2 (S2) was filled with MeOTf (136 µL, 1.2 mmol) and MeNO₂. Syringe 3 (S3) was filled with 2,6-lutidine (74.1 µL, 0.6 mmol) and MeNO₂. Syringe (S4) contained a solution of aq. HCl 6 N. Micromixers (M) and microreactors (R) were immersed in a hot bath at 80 °C. Solution in S1 and S2 were introduced into M (V = 58 nL, Ø = 0.15 mm) (flow rate = 1414 µL/min) and passed through R (V = 47.1 µL) for 1 s. The resulting solution was reacted with 2,6-lutidine (S3) in M’ (V = 58 nL, Ø = 0.15 mm) (flow rate = 1414 µL/min) and passed through trough R’ (V = 5.9 µL) and finally the reaction was quenched by HCl (S4) in M2 (flow rate = 1414 µL/min) and collected in a flask. Volatiles were evaporated under vacuum and a few drops of a solution of aq. NaOH 2 N until pH > 9 was reached. The solution was extracted with CH₂Cl₂ (×3) and the combined organic layers were dried on MgSO₄, filtrated and evaporated under vacuum. The crude product was purified by column chromatography with a solution of Cyclohexane and AcOEt (99/1) to give ¹₀ (74 mg, 84%).
NMR data and spectra

N-Methyldibenzylamine (data consistent with literature)³

1H NMR (CDCl₃, 300 MHz), δ: 7.33 – 7.16 (m, 10H), 3.43 (s, 4H), 2.10 (s, 3H).

13C NMR (CDCl₃, 75 MHz), δ: 139.5, 129.1, 128.3, 127.1, 62.0, 42.4.
N-Ethylbenzylamine (data consistent with literature)4

1H NMR (CDCl\textsubscript{3}, 300 MHz), \(\delta\): 7.35 – 7.15 (m, 10H), 3.48 (s, 4H), 2.42 (q, \(J = 7.1\), 2H), 0.98 (t, \(J = 7.1\), 3H).

13C NMR (CDCl\textsubscript{3}, 75 MHz), \(\delta\): 140.2, 128.9, 128.3, 126.8, 57.9, 47.2, 12.0.
N-Propyldibenzylamine (data consistent with literature)5

1H NMR (CDCl\textsubscript{3}, 300 MHz), \(\delta\): 7.40 – 6.88 (m, 10H), 3.44 (s, 4H), 2.28 (dd, \(J = 7.4, <0.5, 2H\)), 1.42 (s, \(J = 7.4, 2H\)), 0.75 (t, \(J = 7.4, 3H\)).

13C NMR (CDCl\textsubscript{3}, 75 MHz), \(\delta\): 140.2, 128.9, 128.2, 126.8, 58.4, 55.6, 20.3, 12.0.
N-allyldibenzylamine (data consistent with literature)\(^6\)

\(^1\)H NMR (CDCl\(_3\), 300 MHz), \(\delta\): 7.53 – 6.99 (m, 10H), 5.87 (ddt, \(J = 16.5, 10.2, 6.3, 1\)H), 5.28 – 4.90 (m, 2H), 3.54 (s, 4H), 3.02 (dt, \(J = 6.2, 1.2\) Hz, 2H).

\(^{13}\)C NMR (CDCl\(_3\), 75 MHz), \(\delta\): 139.8, 136.1, 128.9, 128.3, 126.9, 117.5, 57.9, 56.45.
N-Propargyldibenzylamine (data consistent with literature)7

1H NMR (CDCl\textsubscript{3}, 300 MHz), \(\delta\): 7.34 – 7.14 (m, 10H), 3.61 (s, 4H), 3.18 (d, \(J = 2.4\), 2H), 2.19 (t, \(J = 2.4\), 1H).

13C NMR (CDCl\textsubscript{3}, 75 MHz), \(\delta\): 138.9, 129.2, 128.5, 127.3, 78.6, 73.6, 41.3.
N-Methyl-N-benzylaniline (data consistent with literature)8

1H NMR (CDCl$_3$, 300 MHz), δ: 7.32 – 7.02 (m, 7H), 6.75 – 6.52 (m, 3H), 4.44 (s, 2H), 2.92 (s, 3H).

13C NMR (CDCl$_3$, 75 MHz), δ: 149.9, 139.17, 129.2, 128.6, 126.9, 126.8, 116.6, 112.4, 56.7, 38.6.
N-Ethyl-N-benzylaniline (data consistent with literature)\(^9\)

1H NMR (CDCl\(_3\), 300 MHz), \(\delta\): 7.35 – 6.98 (m, 7H), 6.72 – 6.45 (m, 3H), 4.41 (s, 2H), 3.37 (q, \(J = 7.1\) Hz, 2H), 1.10 (t, \(J = 7.1\) Hz, 3H).

13C NMR (CDCl\(_3\), 75 MHz), \(\delta\): 148.2, 139.0, 128.9, 128.2, 126.4, 126.2, 115.7, 111.8, 53.6, 44.8, 11.8.

\[\text{Diagram of } N\text{-Ethyl-N-benzylaniline}\]

\[\text{NMR Spectra of } N\text{-Ethyl-N-benzylaniline}\]
N-Propyl-N-benzylaniline

1H NMR (CDCl$_3$, 300 MHz), δ: 7.36 – 6.96 (m, 7H), 6.73 – 6.42 (m, 3H), 4.47 (s, 2H), 3.28 (dd, $J = 7.4, 2H$), 1.61 (s, $J = 7.4, 2H$), 0.86 (t, $J = 7.4, 3H$).

13C NMR (CDCl$_3$, 75 MHz), δ: 148.8, 139.3, 129.3, 128.7, 126.8, 126.6, 116.1, 112.2, 54.6, 53.2, 20.5, 11.6.

HRMS (ESI) m/z [M+H]$^+$ caleld for C$_{16}$H$_{19}$N 226.1596, found 226.1596
N-Allyl-N-benzylaniline (data consistent with literature)10

1H NMR (CDCl$_3$, 300 MHz), δ: 7.40 – 6.89 (m, 7H), 6.73 – 6.52 (m, 3H), 5.88 – 5.75 (m, 1H), 5.22 – 5.05 (m, 2H), 4.47 (s, 2H), 3.94 (m, 2H). 13C NMR (CDCl$_3$, 75 MHz), δ: 149.1, 139.1, 133.8, 129.3, 128.7, 127.0, 126.7, 116.7, 116.5, 112.5, 54.1, 53.19.