Electronic Supplementary Information

A novel application of porphyrin nanoparticles as an effective fluorescent assay platform for nucleic acid detection

Junfeng Zhai,‡a Hailong Li‡ab and Xuping Sun*ab

aState Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China

bGraduate School of the Chinese Academy of Sciences, Beijing 100039, China

‡J. Zhai and H. Li made equal contribution to this work.

*To whom correspondence should be addressed. Tel/Fax: (+86) 431-85262065;
E-mail: sunxp@ciac.jl.cn
Experimental Section

All chemically synthesized oligonucleotides were purchased from Shanghai Sangon Biotechnology Co. Ltd. (Shanghai, China). DNA concentration was estimated by measuring the absorbance at 260 nm. 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphine iron(III) chloride (FeP) was purchased from Sigma-Aldrich Co. N,N-dimethylformamide (DMF) was purchased from Beijing Chemical Reagent Corp., China. The water used throughout all experiments was purified through a Millipore system.

FeP nanoparticles (FePNPs) were prepared as follows: In brief, 4.0 mg of FeP was dissolved in 8 mL of DMF to give a brown stock solution of FeP. 4 mL of the FeP stock solution was added into 4 mL of water dropwise under vigorous stirring. After 10 min, the product was collected by centrifugation and washed with water three times. The final precipitate was redispersed in 2 mL of water for further characterization and use.

For characterization by scanning electron microscopy (SEM), 2 µL of the suspension was placed on an indium tin oxide (ITO) glass slide and air-dried at room temperature. SEM measurements were made on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV. Transmission electron microscopy (TEM) measurements were made on a HITACHI H-8100 EM (Hitachi, Tokyo, Japan) with an accelerating voltage of 100 kV. The sample for TEM measurements was prepared by placing a dilution of the colloidal solution on a
carbon-coated copper grid and drying at room temperature. Fluorescent emission spectra were recorded on a RF-5301PC spectrofluorometer (Shimadzu, Japan). Zeta potential measurements were performed on a Nano-ZS Zetasizer ZEN3600 (Malvern Instruments Ltd., U.K.). An energy-dispersive X-ray spectroscopic detecting unit was used to collect the energy-dispersed spectrum (EDS) for elemental analysis.

The volume of each sample for fluorescence measurement is 300 µL in 20 mM Tris-HCl buffer containing 100 mM NaCl, 5 mM KCl, and 5 mM MgCl₂ (pH: 7.4). All the experiments were carried out at room temperature (about 25 ºC) if not specified.

Oligonucleotide sequences are listed as follows:

(1) P_HIV (FAM dye-labeled ssDNA):

5’-FAM-AGT CAG TGT GGA AAA TCT CTA GC-3’

(2) T₁ (complementary target):

5’-GCT AGA GAT TTT CCA CAC TGA CT-3’

(3) T₂ (single-base mismatched target):

5’-GCT AGA GAT TGT CCA CAC TGA CT-3’ (mismatch underlined).

(4) T₃ (non-complementary target):

5’-TTT TTT TTT TTT TTT TTT TTT TT-3’
Fig. S1 EDS data of the FePNPs thus formed.