Electronic Supplementary Material for

Biosynthesis of Acorane Sesquiterpenes by Trichoderma

Christian A. Citron,^a Ramona Riclea,^a Nelson L. Brock^a and Jeroen S. Dickschat^{*a}

Compound^[a] **I**^[b] I (Lit.)^[c] T. harzianum 714^[d] T. longibrachiatum 594 T. viride 54 3-Methylbutan-1-ol х х XXX 2-Methylbutan-1-ol х Х XX Isobutyl acetate х 2,3-Butanediol х Х 3-Methylbutyl acetate 882 х 2-Methylbutyl acetate 884 х х 980 Oct-1-en-3-ol x х х х Octan-3-one 987 х х х х х Octan-3-ol 996 х 4-Methylhex-5-en-4-olide 1054 х Linalool oxide 1087 х Linalool 1101 х х х 2-Phenylethanol 1115 х х х XXX XX Camphor 1143 х α-Terpineol 1192 х х 1379³ 3,4-Dimethoxystyrene 1370 х 2-Acetyl-4-hydroxy-6-methyl-1383 Х х х 2H-pyran-2-one $(-)-\alpha$ -Funebrene (11) 1383 1385¹ х Х Х х х Х 1418 1418¹ (-)- β -Funebrene (8) XX XX XX Х х Х Acora-2,4-diene (3) 1427 xх XX xх xх XX XX 1424¹ 1429 (-)- β -Cedrene (7) XX XX х х XXX Х 1424^{1} β -Duprezianene (9) 1431 XX х XX Acora-3.5-diene (4) 1421^{1} 1433 xx XX XX х х XX Sesquisabinene B (12) 1447 1446¹ х х х Х х х epi-Isozizaene (13) 1451 х х х х Х х 1445^{2} Myltayl-8(12)-ene (14) 1453 х х х х Cadina-4,11-diene (15) 1455 1446¹ х х х х х х 1457 1446¹ (*E*)- β -Farnesene (16) х х х Muurola-4,11-diene (17)^[e] 1458¹ 1461 х Х Х Х Amorpha-4,11-diene (18) 1463 1472^{1} Х Х х Х Х Х 1467^2 Muurola-4(15),5-diene (19) 1468 Х х х х х Х 1473¹ 1471 (+)- β -Microbiotene (20) x x x х x x 1475 1474^{1} γ -Muurolene (21) х х х Х х х 1475¹ 1477 α -Neocallitropsene (5) XX х XX XX х Х Unknown (MS similar to 20) 1480 х х х х х х 1485 1473¹ α -Curcumene (22) х х х х х Х 1487^{1} Bicyclosesquiphellandrene (23) 1486 х Zingiberene (24) 1496 1489¹ Х 1499 1495¹ β -Alaskene (25) х х х 1494¹ 10-epi-Zonarene (26) 1502 Х 1505 1497¹ α -Cuprenene (27) х х х 1494¹ (Z)- α -Bisabolene (28) 1506 х х х х Х 1503¹ α -Chamigrene (29) 1508 х х Х 1498¹ (S)-Cuparene (30)1511 х х х х х х (S)- β -Bisabolene (31) 1513 1503¹ х х х х х х

⁵ Table 1 Volatiles identified in the headspace extracts of three strains of *Trichoderma*.

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2011

α -Alaskene (6)	1517	1512 ¹	XX	XX	х	х	XX	Х
cis-Calamenene (32)	1528	1517^{1}	х	Х	х	х	х	Х
β -Sesquiphellandrene (33)	1528	1516 ¹	х	х	х	Х	Х	Х
Zonarene (34)	1531	1521^{1}	х	Х	х	х	х	
(S) - γ -Cuprenene (35)	1536	1523^{1}	х			Х	Х	
trans-Calamenene (36)	1539	1530^{1}	х	х	х	х	Х	х
δ-Cuprenene (37)	1549	1546^{1}	х	х	х	Х	Х	Х
(<i>E</i>)-Nerolidol (10)	1567	1561^{2}	х	х	XXX	XXX	Х	х
Tricho-acorenol (1)	1673		XXX	XXX	XXX	XXX	XXX	XXX
Acorenone (2)	1720		XXX	XX	XX	XX	Х	Х

[a] Other unidentified compounds, artifacts, and medium compounds are not mentioned. [b] Determined from a homologous series of alkanes ($C_8 - C_{36}$). [c] Literature data obtained on the same (HP-5) or similar GC column (DB-5, CpSil-5). [d] Relative amounts are indicated by x: < 2%, xx: 2 - 8%, xxx: >8% of total area in the total ion chromatogram. [e] May also be 10-*epi*-muurola-4,11-diene (**38**) or a mixture of **17** and **38** that have identical mass spectra and retention indices.⁴

Figure 1 Total ion chromatograms of the headspace extracts of A) *Trichoderma longibrachiatum* 594, B) *Fusarium verticillioides* M-3125 containing (*R*)- β -bisabolene (N. L. Brock, B. Tudzynski, J. S. Dickschat, unpublished results), C) a mixture of the headspace s extracts from *T. longibrachiatum* 594 and *F. verticillioides* M-3125, D) the essential oil from *Zingiber officinale* containing (*S*)- β -bisabolene,⁵ and E) a mixture of the headspace extract from *T. longibrachiatum* 594 and the essential oil from *Zingiber officinale* on a chiral hydrodex GC column. The coinjection experiment C) shows two separated peaks for β -bisabolene, whereas experiment E) gives only one peak. Conclusively, *Trichoderma longibrachiatum* 594 produces the same enantiomer as *Zingiber officinale*, i. e. (*S*)- β -bisabolene.

Figure 2 Total ion chromatograms of the headspace extracts of A) *Trichoderma harzianum* 714, B) *T. longibrachiatum* 594, C) *T. viride* 54, and D) a mixture of commercial standards of (+)- α -funebrene (red), (+)- β -funebrene (green), (–)- α -cedrene (blue), and (+)- β -cedrene (purple) on a chiral hydrodex GC column. The compounds α -funebrene, β -funebrene, and β -cedrene from all *Trichoderma* strains elute ⁵ with retention times that differ from the retention times of the respective standards, whereas α -cedrene is not found in the *Trichoderma* extracts. In conclusion, these compounds are produced as the antipodes (–)- α -funebrene, (–)- β -funebrene, and (–)- β -cedrene by *Trichoderma* that only rarely occur in Nature, but have been reported from mosses.⁶

Figure 3 Total ion chromatograms of the headspace extracts of A) *Trichoderma harzianum* 714, B) *Trichoderma longibrachiatum* 594, C) *Trichoderma viride* 54, D) the essential oil of the liverwort *Mannia fragrans* containing (+)-β-microbiotene, and E) the essential oil of *Microbiota decussata* containing (–)-β-microbiotene.⁷ The β-microbiotene from *Trichoderma* elutes with the same retention time as (+)- ⁵ β-microbiotene from *M. fragrans*.

Figure 4 Total ion chromatograms of the headspace extracts of A) *Trichoderma viride* 54, B) the essential oil of the liverwort *Mannia fragrans* containing (*S*)-cuparene, and C) the essential oil of *Microbiota decussata* containing (*R*)-cuparene. The absolute configurations of cuparene from *M. fragrans* and *M. decussata*, respectively, were deduced from the known absolute configurations of structurally ⁵ related β -microbiotene.⁷ The cuparene from *T. viride* is a mixture of enantiomers mainly composed of (*S*)-cuparene (67% *ee* determined

by GC).

Figure 5 Total ion chromatograms of the headspace extracts of A) *Trichoderma viride* 54, B) the essential oil of the liverwort *Mannia fragrans* containing (*S*)- γ -cuprenene, and C) the essential oil of *Microbiota decussata* containing (*R*)- γ -cuprenene. The absolute configurations of cuprenene from *M. fragrans* and *M. decussata*, respectively, were deduced from the known absolute configurations of the structurally related β -microbiotene.⁷ The cuprenene from *T. viride* is a mixture of enantiomers mainly composed of (*S*)- γ -cuprenene (determination of the *ee* was not possible due to the small amounts of material in the *Trichoderma* extract).

Figure 6 Total ion chromatogram of a GC-MS analysis of analytically pure (¹H NMR spectroscopy) tricho-acorenol (1). Small amounts (<0.2% of total integral in GC) of **3** and **4** are formed from **1** likely by a thermal reaction in the injection port of the GC.

Scheme 1 Biosynthetic pathway to all sesquiterpenes identified in the headspace extracts of three strains of *Trichoderma* (cf. main text for the biosynthesis of the main compounds 1 - 9). The absolute configurations of compounds that have not been analysed by chiral GC were deduced from sesquiterpenes with identified absolute configuration. The biosynthetic scheme demonstrates that all cyclic ⁵ sesquiterpenes are generated via the (*S*)-bisabolyl cation suggesting that a single terpene cyclase is responsible for the formation of all sesquiterpenes identified in the headspace extracts of *Trichoderma*. The compounds **30** and **35** were not found as pure enantiomers, but as enantiomeric mixtures (67% *ee*). This is explainable by a conversion of the (*S*)-bisabolyl cation not to the (*R*)-cuprenyl cation as shown in the scheme, but to the (*S*)-cuprenyl cation that serves as precursor for the minor enantiomers of **30** and **35**. This process may also result in the formation of sesquiterpenes that are epimers of **20** or **37**, but our compound libraries do not include the mass spectrum of β -microbiotene and a retention index of *I*=1480 (on a HP-5 column) was found in the *Trichoderma* extracts (the mass spectrum is shown in

Figure 7 of SI). An alternative mechanism for the formation of the cuprenyl from the bisabolyl cation is discussed by Hong and Tantillo.⁸

Figure 7 Mass spectrum of an unknown compound (I=1480) from *Trichoderma*. Due to the high similarity of the mass spectrum to the mass spectrum of β -microbiotene and biosynthetic considerations the respective compound may be the epimer of β -microbiotene.

References

- 1 D. Joulain and W. A. König, The Atlas of Spectral Data of Sesquiterpene Hydrocarbons, E. B.-Verlag, Hamburg, 1998.
- 2 R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured, Carol Stream, 2009.
- 3 F. Maggi, T. Bilek, G. Cristalli, F. Papa, G. Sagratini and S. Vittori, J. Sci. Food Agric., 2009, 89, 2505.
- 10 4 Y. Saritas, M. M. Sonwa, H. Iznaguen, W. A. König, H. Muhle and R. Mues, *Phytochemistry*, 2001, 57, 443.
- 5 W. A. König, A. Rieck, I. Hardt, B. Gehrcke, K.-H. Kubeczka and H. Muhle, J. High Res. Chromatogr., 1994, 17, 315.
- 6 M. Toyota, K. Kimura and Y. Asakawa, Chem. Pharm. Bull., 1998, 46, 1488.
- 7 S. Melching, A. Blume, W. A. König and H. Muhle, *Phytochemistry*, 1998, 48, 661.
- 8 Y. J. Hong and D. J. Tantillo, Org. Lett., 2006, 8, 4601.
- 15

5