Supporting Information

Injectable Biodegradable Polymeric System for Preserving the Active form and Delayed-Release of Camptothecin Anticancer Drugs

Olcay Mert, Güneş Esendağlı, A. Lale Doğan, Ayhan S. Demir*

Tables and Figures... 2

Copy of HPLC spectra ... 7

Copy of 1H NMR spectra ...61
Table 1 Lactone Conversion of free CPT via FL

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>$I(\lambda_1)$</th>
<th>$I(\lambda_2)$</th>
<th>R</th>
<th>R_l</th>
<th>R_C</th>
<th>$I_l(\lambda_2)$</th>
<th>$I_c(\lambda_2)$</th>
<th>L %</th>
<th>C %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>206</td>
<td>60</td>
<td>3.43</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>99.91</td>
<td>0.09</td>
</tr>
<tr>
<td>20</td>
<td>269</td>
<td>92</td>
<td>2.92</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>86.40</td>
<td>13.60</td>
</tr>
<tr>
<td>40</td>
<td>324</td>
<td>121</td>
<td>2.69</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>75.13</td>
<td>24.87</td>
</tr>
<tr>
<td>60</td>
<td>373</td>
<td>145</td>
<td>2.57</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>66.53</td>
<td>33.47</td>
</tr>
<tr>
<td>80</td>
<td>418</td>
<td>168</td>
<td>2.50</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>59.77</td>
<td>40.23</td>
</tr>
<tr>
<td>100</td>
<td>454</td>
<td>186</td>
<td>2.45</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>54.50</td>
<td>45.50</td>
</tr>
<tr>
<td>120</td>
<td>486</td>
<td>202</td>
<td>2.41</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>49.26</td>
<td>50.74</td>
</tr>
<tr>
<td>140</td>
<td>511</td>
<td>216</td>
<td>2.37</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>44.28</td>
<td>55.72</td>
</tr>
<tr>
<td>160</td>
<td>533</td>
<td>226</td>
<td>2.36</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>42.28</td>
<td>57.72</td>
</tr>
<tr>
<td>180</td>
<td>552</td>
<td>237</td>
<td>2.33</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>38.21</td>
<td>61.79</td>
</tr>
<tr>
<td>200</td>
<td>567</td>
<td>246</td>
<td>2.31</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>33.72</td>
<td>66.28</td>
</tr>
<tr>
<td>220</td>
<td>578</td>
<td>251</td>
<td>2.31</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>32.91</td>
<td>67.09</td>
</tr>
<tr>
<td>240</td>
<td>586</td>
<td>255</td>
<td>2.30</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>32.35</td>
<td>67.65</td>
</tr>
<tr>
<td>260</td>
<td>594</td>
<td>259</td>
<td>2.30</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>31.42</td>
<td>68.58</td>
</tr>
<tr>
<td>280</td>
<td>599</td>
<td>261</td>
<td>2.29</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>30.45</td>
<td>69.55</td>
</tr>
<tr>
<td>300</td>
<td>601</td>
<td>263</td>
<td>2.29</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>29.70</td>
<td>70.30</td>
</tr>
<tr>
<td>310</td>
<td>601</td>
<td>264</td>
<td>2.28</td>
<td>3.43</td>
<td>2.18</td>
<td>60</td>
<td>264</td>
<td>26.91</td>
<td>73.09</td>
</tr>
</tbody>
</table>
Table 2 Lactone Conversion of free TPT via FL

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>$I_1(\lambda_1)$</th>
<th>$I_2(\lambda_2)$</th>
<th>R</th>
<th>R_L</th>
<th>R_C</th>
<th>$I_L(\lambda_2)$</th>
<th>$I_C(\lambda_2)$</th>
<th>L %</th>
<th>C %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>560</td>
<td>115</td>
<td>4.87</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>97.77</td>
<td>2.23</td>
</tr>
<tr>
<td>20</td>
<td>549</td>
<td>112</td>
<td>4.91</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>87.14</td>
<td>12.86</td>
</tr>
<tr>
<td>40</td>
<td>535</td>
<td>109</td>
<td>4.91</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>86.71</td>
<td>13.29</td>
</tr>
<tr>
<td>60</td>
<td>526</td>
<td>106</td>
<td>4.95</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>78.59</td>
<td>21.41</td>
</tr>
<tr>
<td>80</td>
<td>517</td>
<td>104</td>
<td>4.95</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>77.21</td>
<td>22.79</td>
</tr>
<tr>
<td>100</td>
<td>506</td>
<td>101</td>
<td>4.98</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>70.24</td>
<td>29.76</td>
</tr>
<tr>
<td>120</td>
<td>498</td>
<td>100</td>
<td>4.99</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>69.63</td>
<td>30.37</td>
</tr>
<tr>
<td>140</td>
<td>491</td>
<td>98</td>
<td>5.02</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>62.17</td>
<td>37.83</td>
</tr>
<tr>
<td>160</td>
<td>484</td>
<td>96</td>
<td>5.02</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>61.90</td>
<td>38.10</td>
</tr>
<tr>
<td>180</td>
<td>478</td>
<td>95</td>
<td>5.04</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>57.91</td>
<td>42.09</td>
</tr>
<tr>
<td>200</td>
<td>471</td>
<td>93</td>
<td>5.07</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>52.47</td>
<td>47.53</td>
</tr>
<tr>
<td>220</td>
<td>464</td>
<td>91</td>
<td>5.09</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>49.72</td>
<td>50.28</td>
</tr>
<tr>
<td>240</td>
<td>455</td>
<td>89</td>
<td>5.10</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>47.39</td>
<td>52.61</td>
</tr>
<tr>
<td>260</td>
<td>445</td>
<td>87</td>
<td>5.13</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>41.24</td>
<td>58.76</td>
</tr>
<tr>
<td>280</td>
<td>432</td>
<td>84</td>
<td>5.14</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>40.38</td>
<td>59.62</td>
</tr>
<tr>
<td>300</td>
<td>419</td>
<td>81</td>
<td>5.17</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>33.95</td>
<td>66.05</td>
</tr>
<tr>
<td>310</td>
<td>413</td>
<td>79</td>
<td>5.20</td>
<td>4.86</td>
<td>5.41</td>
<td>115</td>
<td>79</td>
<td>30.29</td>
<td>69.71</td>
</tr>
</tbody>
</table>
Table 3 CPT in gel, 0.015 % loading via FL

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>$I(\lambda_1)$</th>
<th>$I(\lambda_2)$</th>
<th>R</th>
<th>R_L</th>
<th>R_C</th>
<th>$I_L(\lambda_2)$</th>
<th>$I_C(\lambda_2)$</th>
<th>$L\ %$</th>
<th>$C\ %$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>138.60</td>
<td>58.80</td>
<td>2.36</td>
<td>2.39</td>
<td>2.07</td>
<td>58.80</td>
<td>121.00</td>
<td>94.73</td>
<td>5.27</td>
</tr>
<tr>
<td>85</td>
<td>75.60</td>
<td>31.96</td>
<td>2.37</td>
<td>2.39</td>
<td>2.07</td>
<td>31.96</td>
<td>71.00</td>
<td>96.40</td>
<td>3.60</td>
</tr>
<tr>
<td>175</td>
<td>226.40</td>
<td>94.60</td>
<td>2.39</td>
<td>2.39</td>
<td>2.07</td>
<td>94.60</td>
<td>194.00</td>
<td>100.49</td>
<td>-0.49</td>
</tr>
<tr>
<td>260</td>
<td>185.60</td>
<td>77.50</td>
<td>2.39</td>
<td>2.39</td>
<td>2.07</td>
<td>77.50</td>
<td>165.00</td>
<td>100.70</td>
<td>-0.70</td>
</tr>
<tr>
<td>310</td>
<td>307.39</td>
<td>129.00</td>
<td>2.38</td>
<td>2.39</td>
<td>2.07</td>
<td>129.00</td>
<td>277.00</td>
<td>98.95</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Table 4 TPT in gel, 0.015 % loading via FL

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>$I(\lambda_1)$</th>
<th>$I(\lambda_2)$</th>
<th>R</th>
<th>R_L</th>
<th>R_C</th>
<th>$I_L(\lambda_2)$</th>
<th>$I_C(\lambda_2)$</th>
<th>$L\ %$</th>
<th>$C\ %$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>246.0</td>
<td>84.4</td>
<td>2.91</td>
<td>2.89</td>
<td>3.7</td>
<td>84.4</td>
<td>68</td>
<td>96.24</td>
<td>3.76</td>
</tr>
<tr>
<td>85</td>
<td>232.2</td>
<td>79.5</td>
<td>2.92</td>
<td>2.89</td>
<td>3.7</td>
<td>79.5</td>
<td>65</td>
<td>95.40</td>
<td>4.60</td>
</tr>
<tr>
<td>175</td>
<td>268.5</td>
<td>92.2</td>
<td>2.91</td>
<td>2.89</td>
<td>3.7</td>
<td>92.2</td>
<td>73</td>
<td>96.57</td>
<td>3.43</td>
</tr>
<tr>
<td>260</td>
<td>253.8</td>
<td>87.8</td>
<td>2.89</td>
<td>2.89</td>
<td>3.7</td>
<td>87.8</td>
<td>71</td>
<td>99.90</td>
<td>0.10</td>
</tr>
<tr>
<td>310</td>
<td>529.2</td>
<td>181</td>
<td>2.92</td>
<td>2.89</td>
<td>3.7</td>
<td>181</td>
<td>144</td>
<td>94.82</td>
<td>5.18</td>
</tr>
</tbody>
</table>
Figure 1 HPLC Chromatograms of the conversion of lactone to carboxylate of free CPT with time elapsed.

Figure 2 HPLC Chromatograms of the conversion of lactone to carboxylate of TPT with time elapsed.
Figure 3 ATR-FTIR spectra of powder CPT (1) and CPT in copolymer gel (2) in the range of 2000-4000 cm\(^{-1}\) (A) and 600-1800 cm\(^{-1}\) (B). Copolymer gel was recorded as background.
Copy of the HPLC spectra
First measurement of three independent data for free CPT in tris buffer at pH=7.4
First measurement of three independent data for free CPT in tris buffer at pH=7.4
t=20 min
First measurement of three independent data for free CPT in tris buffer at pH=7.4
t=39 min
First measurement of three independent data for free CPT in tris buffer at pH=7.4
t=58 min
First measurement of three independent data for free CPT in tris buffer at pH=7.4

$t=78$ min
First measurement of three independent data for free CPT in tris buffer at pH=7.4

$t=97$ min
First measurement of three independent data for free CPT in tris buffer at pH=7.4
t=117 min
First measurement of three independent data for free CPT in tris buffer at pH=7.4
t=136 min
First measurement of three independent data for free CPT in tris buffer at pH=7.4
t=155 min
First measurement of three independent data for free CPT in tris buffer at pH=7.4
$t=175$ min
First measurement of three independent data for free CPT in tris buffer at pH=7.4

πm

Minutes

mV

57.9

42.1

194 min

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2011
First measurement of three independent data for free CPT in tris buffer at pH=7.4

$t=213 \text{ min}$
First measurement of three independent data for free CPT in tris buffer at pH=7.4
$t=232$ min
First measurement of three independent data for free CPT in tris buffer at pH=7.4
$t=252$ min
First measurement of three independent data for free CPT in tris buffer at pH=7.4
t=271 min
First measurement of three independent data for free CPT in tris buffer at pH=7.4

Δm

Minutes

Δm

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

32.0

68.0
First measurement of three independent data for free CPT in tris buffer at pH=7.4
t=310 min
First measurement of three independent data for free TPT in tris buffer at pH=7.4
$t=0$ min
First measurement of three independent data for free TPT in tris buffer at pH=7.4
t=20 min
First measurement of three independent data for free TPT in tris buffer at pH=7.4
t=39 min
First measurement of three independent data for free TPT in tris buffer at pH=7.4

\(t = 58\) min
First measurement of three independent data for free TPT in tris buffer at pH=7.4

t=78 min
First measurement of three independent data for free TPT in tris buffer at pH=7.4
First measurement of three independent data for free TPT in tris buffer at pH=7.4
t=117 min
First measurement of three independent data for free TPT in tris buffer at pH=7.4
\(t=136 \text{ min} \)
First measurement of three independent data for free TPT in tris buffer at pH=7.4
t=155 min
First measurement of three independent data for free TPT in tris buffer at pH=7.4
First measurement of three independent data for free TPT in tris buffer at pH=7.4

$t=194$ min
First measurement of three independent data for free TPT in tris buffer at pH=7.4

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2011
First measurement of three independent data for free TPT in tris buffer at pH=7.4

$t=232\text{ min}$

![Graph showing mV vs. Minutes]

Electronic Supplementary Material (ESI) for RSC Advances

This journal is © The Royal Society of Chemistry 2011
First measurement of three independent data for free TPT in tris buffer at pH=7.4

\(t = 25.2 \text{ min} \)
First measurement of three independent data for free TPT in tris buffer at pH=7.4
t=271 min
First measurement of three independent data for free TPT in tris buffer at pH=7.4 for 290 min.
First measurement of three independent data for free TPT in tris buffer at pH=7.4
t=310 min
First measurement of three independent data for CPT in gel at 0.015% loading
t= 0 min
First measurement of three independent data for CPT in gel at 0.015% loading

$t = 45$ min
First measurement of three independent data for CPT in gel at 0.015% loading
t= 90 min
First measurement of three independent data for CPT in gel at 0.015\% loading
t = 135 min
First measurement of three independent data for CPT in gel at 0.015% loading
t= 180 min
First measurement of three independent data for CPT in gel at 0.015% loading

$t = 225$ min
First measurement of three independent data for CPT in gel at 0.015% loading

$t=270$ min
First measurement of three independent data for CPT in gel at 0.015% loading
$t = 315$ min
First measurement of three independent data for TPT in gel at 0.015% loading

$t=0$ min
First measurement of three independent data for TPT in gel at 0.015% loading
t= 45 min
First measurement of three independent data for TPT in gel at 0.015% loading

\(t = 90 \text{ min} \)
First measurement of three independent data for TPT in gel at 0.015% loading

t= 135 min
First measurement of three independent data for TPT in gel at 0.015% loading
t = 180 min
First measurement of three independent data for TPT in gel at 0.015% loading
t= 225 min
First measurement of three independent data for TPT in gel at 0.015% loading
\(t= 270 \text{ min}\)
First measurement of three independent data for TPT in gel at 0.015% loading
t= 315 min
First measurement of three independent data for CPT in gel at 1.0% loading (representative example)

$t = 120 \text{ min}$
First measurement of three independent data for CPT in gel at 10.0% loading (representative example)

$t = 120$ min
First measurement of three independent data for TPT in gel at 1.0% loading (representative example)
First measurement of three independent data for TPT in gel at 10.0% loading (representative example)
t= 120 min
Copy of the 1H NMR spectra
Copolymer 1
Copolymer 2