Electronic Supplementary Information (ESI)

Structure-Property Relations in Hexagonal and Monoclinic BiPO₄:Eu³⁺

Nanoparticles Synthesized by Polyol-mediated Method

P. Arunkumar, C. Jayajothi, D. Jeyakumar, N. Lakshminarasimhan*

Functional Materials Division,
CSIR-Central Electrochemical Research Institute (CECRI),
Karaikudi 630 006, Tamil Nadu, India.

Figure S1. Powder XRD pattern of hexagonal BiPO₄.xH₂O obtained by precipitation method.
Figure S2. SEM images of hexagonal BiPO$_4$.xH$_2$O obtained by precipitation method.
Figure S3. TEM images of hexagonal Bi$_{0.95}$Eu$_{0.05}$PO$_4$.xH$_2$O.
Figure S4. TEM images of monoclinic Bi$_{0.95}$Eu$_{0.05}$PO$_4$
Figure. S5. The shift in the position of spinning side bands in the 31P MAS-NMR spectra of (a) hexagonal Bi$_{0.95}$Eu$_{0.05}$PO$_4$.xH$_2$O and (b) monoclinic Bi$_{0.95}$Eu$_{0.05}$PO$_4$ under different spinning rates.
Figure S6. PL excitation and emission spectra of monoclinic Bi$_{0.95}$Eu$_{0.05}$PO$_4$ obtained by conventional solid state reaction method.