Long term cycling studies of electrospun TiO$_2$ nanostructures and their composites with MWCNTs for rechargeable Li-ion batteries

Zhu Peining a b, Wu Yongzhi b, M. V. Reddy d, A. Sreekumaran Nair b, B. V. R. Chowdari d, and S. Ramakrishna b e

a Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
b Healthcare and Energy Materials Laboratory, National University of Singapore, Singapore 117581, Singapore
c NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
d Department of Physics, National University of Singapore, Singapore 117542
e King Saud University, Riyadh 11451, Kingdom of Saudi Arabia

\dagger These two authors contributed equally in the research work.

Corresponding authors: phymvvr@nus.edu.sg (M. V. Reddy), nniansn@nus.edu.sg (A. S. Nair)
Supporting Information 1

XPS spectra of TiO$_2$ (A) and TiO$_2$-CNT (B)
Supporting Information 2

Raman spectra of TiO$_2$ (black trace), functionalized MWCNTs (red trace), and TiO$_2$-MWCNTs (blue trace)
Galvanostatic discharge-charge cycling curves (voltage vs. capacity profiles) of CNTs (electrode composition 80:20 PVDF). Current rate: (a) 40 mA g\(^{-1}\) (0.12 C rate) and (b) 150 mA g\(^{-1}\) (0.45 C rate). Li metal was the counter and reference electrodes. Potential window: 1.0-2.8 V.