Supporting Information

Na₃PO₄-catalyzed aminochlorination reaction of β-nitrostyrenes in water

Haibo Mei, Yiwen Xiong, Yu Qian, Jianlin Han, Guigen Li and Yi Pan

a School of Chemistry and Chemical Engineering, Nanjing University; State of Key Laboratory of Coordination, Nanjing University, Nanjing, 210093, China.

b Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-106, USA

E-mail: hanjl@nju.edu.cn, yipan@nju.edu.cn

Table of Contents

Page

1. General information --- 2

2. Aminochlorination of β-nitrostyrenes with BocNCl₂ ------------ 2

3. Aminochlorination of β-nitrostyrene with BocNH₂ and NCS --- 7

4. 1H and 13C NMR spectra for compound 3 ---------------------- 8
1. General information

All aminohalogenation reactions were performed in vials at room temperature without protection of inert gases. BocNCl$_2$ was prepared according to the reported methods. The other chemicals were used as obtained from commercial sources without further purification. Flash chromatography was performed using silica gel 60 (200-300 mesh). Thin layer chromatography was carried out on silica gel 60 F-254 TLC plates of 20 cm × 20 cm. Melting points are uncorrected. IR spectra were collected on Bruker Vector 22 in KBr pellets. 1H and 13C NMR (TMS used as internal standard) spectra were recorded with a Bruker ARX 300 spectrometer. High resolution mass spectra for all the new compounds were done by Micromass Q-Tof instrument (ESI).

2. Aminochlorination of β-nitrostyrenes with BocNCl$_2$

Into a reaction vial were taken β-nitrostyrenes (0.5 mmol), Na$_3$PO$_4$·12H$_2$O (0.1 mmol), BocNCl$_2$ (1.25 mmol), MeCN (1.6 mL) and H$_2$O (3.2 mL). The reaction mixture was stirred at room temperature for 12 min, and then the reaction was quenched with saturated Na$_2$SO$_3$ (3.0 mL). The organic layer was taken and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were dried with anhydrous Na$_2$SO$_4$, filtered and the solvent was removed to give the crude product, which was purified by TLC plate (hexane/EtOAc, 8:1).

Tert-butyl 2,2-dichloro-2-nitro-1-phenylethylcarbamate (3a): white solid, yield 88%, mp 105-106 °C. 1H NMR (CDCl$_3$, 300 MHz): δ = 7.42 (s, 5 H), 5.99 (d, J = 10.5 Hz, 1 H), 5.56 (d, J = 10.5 Hz, 1 H), 1.45 (s, 9 H).
Tert-butyl 2,2-dichloro-1-(2-methoxyphenyl)-2-nitroethylcarbamate (3b): white solid, yield 97%, mp 152-154 °C. 1H NMR (CDCl$_3$, 300 MHz): $\delta = 7.33$-7.42 (m, 2 H), 6.94-7.03 (m, 2 H), 6.28 (d, $J = 10.5$ Hz, 1 H), 6.08 (d, $J = 9.6$ Hz, 1 H), 3.88 (s, 3 H), 1.46 (s, 9 H). 13C NMR (CDCl$_3$, 75 MHz): $\delta = 157.7$, 154.3, 130.9, 130.6, 120.8, 116.5, 112.8, 111.6, 81.0, 61.0, 55.6, 28.2. IR (KBr): $\nu = 3253$, 3142, 2978, 1697, 1585, 1365, 1249, 1160, 756 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{14}$H$_{18}$N$_2$O$_5$Cl$_2$Na: 387.0485, found: 387.0490.

Tert-butyl 2,2-dichloro-1-(2-chlorophenyl)-2-nitroethylcarbamate (3c): white solid, yield 98%, mp 168-170 °C. 1H NMR (CDCl$_3$, 300 MHz): $\delta = 7.48$-7.51 (m, 2 H), 7.33-7.40 (m, 2 H), 6.75 (d, $J = 10.2$ Hz, 1 H), 5.58 (d, $J = 10.2$ Hz, 1 H), 1.44 (s, 9 H).

Tert-butyl 2,2-dichloro-1-(3-fluorophenyl)-2-nitroethylcarbamate (3d): white solid, yield 87%, mp 115-117 °C. 1H NMR (CDCl$_3$, 300 MHz): $\delta = 7.35$-7.43 (m, 1 H), 7.10-7.24 (m, 3 H), 5.99 (d, $J = 8.7$ Hz, 1 H), 5.55 (s, 1 H), 1.45 (s, 9 H).
Tert-butyl 2,2-dichloro-1-(3-chlorophenyl)-2-nitroethylcarbamate (3e):
white solid, yield 73%, mp 136-138 °C. \(^1\)H NMR (CDCl\(_3\), 300 MHz): δ = 7.33-7.45 (m, 4 H), 5.97 (d, \(J = 9.3\) Hz, 1 H), 5.58 (s, 1H), 1.45 (s, 9 H).

Tert-butyl 1-(3-bromophenyl)-2,2-dichloro-2-nitroethylcarbamate (3f):
white solid, yield 86%, mp 152-154 °C. \(^1\)H NMR (CDCl\(_3\), 300 MHz): δ = 7.55-7.60 (m, 2 H), 7.39 (d, \(J = 7.2\) Hz, 1 H), 7.31 (d, \(J = 7.8\) Hz, 1 H), 5.96 (d, \(J = 9.0\) Hz, 1 H), 5.57 (d, \(J = 8.7\) Hz, 1 H), 1.45 (s, 9 H).

Tert-butyl 2,2-dichloro-2-nitro-1-p-tolylethylcarbamate (3g):
white solid, yield 83%, mp 108-110 °C. \(^1\)H NMR (CDCl\(_3\), 300 MHz): δ = 7.32 (d, \(J = 7.8\) Hz, 2 H), 7.23 (d, \(J = 8.4\) Hz, 2 H), 5.95 (d, \(J = 9.9\) Hz, 1 H), 5.58 (d, \(J = 9.0\) Hz, 1 H), 2.38 (s, 3 H), 1.45 (s, 9 H).

Tert-butyl 2,2-dichloro-1-(4-methoxyphenyl)-2-nitroethylcarbamate (3h):
white solid,
yield 77%, mp 113-114 °C. 1H NMR (CDCl\textsubscript{3}, 300 MHz): \(\delta = 7.35 \) (d, \(J = 8.7 \) Hz, 2 H), 6.93 (d, \(J = 9.0 \) Hz, 2 H), 5.93 (d, \(J = 9.3 \) Hz, 1 H), 5.54 (d, \(J = 9.9 \) Hz, 1 H), 3.83 (s, 3 H), 1.45 (s, 9 H).

\[
\begin{align*}
\text{\textbf{N}} & \text{\textbf{O}} \text{\textbf{2}} \\
\text{\textbf{C}} & \text{\textbf{Cl}} \text{\textbf{Cl}} \\
\text{\textbf{N}} & \text{\textbf{H}} \\
\text{\textbf{O}} & \text{\textbf{O}} \\
\text{\textbf{F}} & \text{\textbf{3}} \\
\end{align*}
\]

\(T\text{ert-butyl 2,2-dichloro-1-(4-fluorophenyl)-2-nitroethylcarbamate (3i): white solid, yield 85\%, mp 109-110 °C.}\) 1H NMR (CDCl\textsubscript{3}, 300 MHz): \(\delta = 7.40-7.44 \) (m, 2 H), 7.08-7.13 (m, 2 H), 5.97 (d, \(J = 9.6 \) Hz, 1 H), 5.55 (d, \(J = 9.9 \) Hz, 1 H), 1.44 (s, 9 H).

\[
\begin{align*}
\text{\textbf{N}} & \text{\textbf{O}} \text{\textbf{2}} \\
\text{\textbf{C}} & \text{\textbf{Cl}} \text{\textbf{Cl}} \\
\text{\textbf{N}} & \text{\textbf{H}} \\
\text{\textbf{O}} & \text{\textbf{O}} \\
\text{\textbf{Cl}} & \text{\textbf{Cl}} \\
\end{align*}
\]

\(T\text{ert-butyl 2,2-dichloro-1-(4-chlorophenyl)-2-nitroethylcarbamate (3j): white solid, yield 94\%, mp 101-102 °C.}\) 1H NMR (CDCl\textsubscript{3}, 300 MHz): \(\delta = 7.38 \) (s, 4 H), 5.96 (d, \(J = 8.7 \) Hz, 1 H), 5.54 (s, 1 H), 1.44 (s, 9 H).

\[
\begin{align*}
\text{\textbf{N}} & \text{\textbf{O}} \text{\textbf{2}} \\
\text{\textbf{C}} & \text{\textbf{Cl}} \text{\textbf{Cl}} \\
\text{\textbf{N}} & \text{\textbf{H}} \\
\text{\textbf{O}} & \text{\textbf{O}} \\
\text{\textbf{Br}} & \text{\textbf{Cl}} \\
\end{align*}
\]

\(T\text{ert-butyl 1-(4-bromophenyl)-2,2-dichloro-2-nitroethylcarbamate (3k): white solid, yield 78\%, mp 106-107 °C.}\) 1H NMR (CDCl\textsubscript{3}, 300 MHz): \(\delta = 7.57 \) (d, \(J = 8.4 \) Hz, 2 H), 7.32 (d, \(J = 8.4 \) Hz, 2 H), 5.95 (d, \(J = 9.9 \) Hz, 1 H), 5.52 (s, 1 H), 1.44 (s, 9 H).
Tert-butyl 2,2-dichloro-2-nitro-1-(4-(trifluoromethyl)phenyl)ethylcarbamate (3i): white solid, yield 84%, mp 118-119 °C. \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta = 7.70\) (d, \(J = 8.4\) Hz, 2 H), 7.60 (d, \(J = 8.1\) Hz, 2 H), 6.06 (d, \(J = 9.0\) Hz, 1 H), 5.60 (d, \(J = 9.3\) Hz, 1 H), 1.44 (s, 9 H).

Tert-butyl 2,2-dichloro-1-(4-cyanophenyl)-2-nitroethylcarbamate (3m): white solid, yield 96%, mp 129-130 °C. \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta = 7.74\) (d, \(J = 7.5\) Hz, 2 H), 7.60 (d, \(J = 5.7\) Hz, 2 H), 6.04 (d, \(J = 5.1\) Hz, 1 H), 5.63 (d, \(J = 4.8\) Hz, 1 H), 1.43 (s, 9 H).

Tert-butyl 1-(3-bromo-4-methoxyphenyl)-2,2-dichloro-2-nitroethylcarbamate (3n): white solid, yield 90%, mp 169-171 °C. \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta = 7.62\) (s, 1 H), 7.34 (d, \(J = 7.2\) Hz, 1 H), 6.92 (d, \(J = 8.7\) Hz, 1 H), 5.91 (d, \(J = 7.8\) Hz, 1 H), 5.51 (d, \(J = 7.8\) Hz, 1 H), 3.92 (s, 3 H), 1.45 (s, 9 H).

Tert-butyl 2,2-dichloro-1-(naphthalen-1-yl)-2-nitroethylcarbamate (3o): white solid, yield 61%, mp 198-199 °C. \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta = 8.40\) (d, \(J = 6.6\) Hz, 1 H),
7.97 (t, \(J = 8.4 \text{ Hz}, 2 \text{ H} \)), 7.64-7.72 (m, 2 H), 7.52-7.60 (m, 2 H), 7.06 (d, \(J = 8.7 \text{ Hz}, 1 \text{ H} \)), 5.70 (d, \(J = 9.0 \text{ Hz}, 1 \text{ H} \)), 1.42 (s, 9 H).

3. Aminochlorination of β-nitrostyrene with BocNH\(_2\) and NCS

Into a reaction vial were taken β-nitrostyrenes (0.5 mmol), Na\(_3\)PO\(_4\)-12H\(_2\)O (0.1 mmol), BocNH\(_2\) (1.5 mmol), NCS (1.5 mmol), MeCN (1.6 mL) and H\(_2\)O (3.2 mL). The reaction mixture was stirred at room temperature for 48 h, and then the reaction was quenched with saturated Na\(_2\)SO\(_3\) (3.0 mL). The organic layer was taken and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were dried with anhydrous Na\(_2\)SO\(_4\), filtered and the solvent was removed to give the crude product, which was purified by TLC plate (hexane/EtOAc, 8:1).

Reference

4. 1H and 13C NMR spectra for compound 3

1H NMR of 3a
1H NMR of 3b

13C NMR of 3b
1H NMR of 3c

1H NMR of 3d
1H NMR of 3e

1H NMR of 3f
1H NMR of 3g

1H NMR of 3h
1H NMR of 3i

1H NMR of 3j
1H NMR of 3k

1H NMR of 3l
1H NMR of 3m

1H NMR of 3n