Supporting Information

Chemiluminescence from the Biomimetic Reaction of 1,2,4-Trioxolanes and 1,2,4,5-Tetroxanes with Ferrous Ions

aInstitute of Organic Chemistry, Ufa Scientific Centre of the RAS, 71 Prospect Oktyabrya, 450054 Ufa, Russia
bZelinsky Institute of Organic Chemistry of the RAS, 47 Leninskiy prospekt, 119991 Moscow, Russia
cInstitute of Petrochemistry and Catalysis of the RAS, 141 Prospect Oktyabrya, 450075 Ufa, Russia
dInstitut für Organische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Chemistry, Facundo Bueso 110, University of Puerto Rico, Rio Piedras, Puerto Rico 00931, USA

Content: The Supporting Information (SI) material consists of the chemiluminescence procedure for the reaction of the cyclic peroxides with ferrous ions, the fluorescence and chemiluminescence spectra (taken by means of cut-off filters) recorded in the peroxide reactions (see Figures S-1, S-2, S-4, and S-5), and the kinetics of the chemiluminescence decay (see Figure S-3).
Measurement of the Chemiluminescence in the Reaction of Cyclic Peroxides 1-3, OZ03 and Artemisinin with Ferrous Ion in CH₃CN/H₂O Solution.

In a typical procedure, an aliquot of the cyclic peroxide in a CH₃CN:H₂O (1:1) mixture was transferred to a cuvette, which was placed above the photocathode of the photomultiplier. Subsequently, an aliquot of FeSO₄/rhodamine G in CH₃CN:H₂O (1:1) mixture was rapidly (ca. 1 s) injected into the peroxide solution and immediately the CL was recorded. Similarly, in another set of experiments, a solution of FeCl₃/rhodamine G in aqueous (50%) acetonitrile was added rapidly to a mixture of L-cysteine hydrochloride and the cyclic peroxide in CH₃CN:H₂O (1:1) solution, and immediately the CL was recorded. All reactions were carried out at 70 °C (for peroxides 1-3 and OZ03) or 60 °C (for artemisinin) by bubbling a slow stream of oxygen gas through the CH₃CN/H₂O solution. Solutions in the cuvette and in the injector were thermostated at the required temperature for ca. 5 min prior to initiating the reaction.

The following concentrations of the reagents in the cuvette were chosen:

- [peroxides 1 or 2] = [FeCl₃] = [Rhodamine G] = 1.5×10⁻³ M, [L-cysteine] = 3×10⁻³ M;
- [artemisinin] = 2×10⁻² M, [FeSO₄] = 4×10⁻³ M, [rhodamine G] = 1×10⁻³ M or
- [OZ03] = 2×10⁻³ M, [FeSO₄] = 1×10⁻³ M, [rhodamine G] = 5×10⁻⁴ M or
- [OZ03] = [FeCl₃] = 1.5×10⁻³ M, [L-cysteine] = 3×10⁻³ M, [rhodamine G] = 1.5×10⁻³ M.
Figure S-1. Curve 1 (dashed line) represents the CL spectrum for the reaction of peroxide 1 with FeCl₃ in the presence of L-cysteine and rhodamine G ([peroxide 1] = [FeCl₃] = [Rhodamine G] = 1.5×10⁻³ M, [L-cysteine] = 3×10⁻³ M, CH₃CN/H₂O (1:1), 70 °C, O₂ atmosphere). Curve 2 (solid line) represents the fluorescence spectrum of rhodamine G ([Rhodamine G] = 1×10⁻⁵ M, CH₃CN/H₂O (1:1), λₑₓ = 488 nm.)
Figure S-2. Curve 1 (dashed line) represents the CL spectrum for the reaction of the trifluoroacetone tetroxane 4 with FeSO₄ ([peroxide 4] = [FeSO₄] = 2×10⁻³ M, CH₃CN:H₂O (1:1), 30 °C). Curve 2 (solid line) represents the fluorescence spectrum of 1,1,1-trifluoroacetone in aqueous (50%) acetonitrile (1.5×10⁻² M, 5 °C)
Figure S-3. Time profile of the CL decay for the reaction of the trifluoroacetone tetroxane 4 with FeSO₄ and its semi-logarithmic plot for the first-order kinetics ([peroxide 4] = 2×10⁻⁴ M, [FeSO₄] = 4×10⁻³ M, CH₃CN : H₂O (1:1), 30 °C).
Figure S-4. CL spectrum for the reaction of the bicyclic tetroxane 5 with FeSO₄ ([tetroxane 5] = [FeSO₄] = 2×10⁻³ M, CH₃CN : H₂O (1:1), 60 °C) taken under oxygen (curve 1, solid line) and argon (curve 2, dashed line) atmospheres.
Figure S-5. Curve 1 (dashed line) represents the CL spectrum for the reaction of the bicyclic tetroxane 5 with FeSO₄ in the presence of rhodamine G ([tetroxane 5] = 5×10⁻³ M, [FeSO₄] = 1×10⁻³ M, [Rd] = 2×10⁻³ M, CH₃CN/H₂O (1:1), 60 °C). Curve 2 (solid line) represents the fluorescence spectrum of rhodamine G ([Rhodamine G] = 1×10⁻⁵ M, CH₃CN/H₂O (1:1), λₑₓ = 488 nm.)