Electronic supplementary information (ESI)

A colorimetric and ratiometric NIR fluorescent turn-on fluoride chemodosimeter based on BODIPY derivatives: high selectivity via specific Si-O cleavage

Jian Cao,a,b Chunchang Zhao,*a Peng Feng,*a Yulin Zhang,a Weihong Zhu*a

*aShanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China. E-mail: zhaocchang@ecust.edu.cn; whzhu@ecust.edu.cn

bShanghai University of Engineering Science, Shanghai 201620, P. R. China.

Table of contents

1. General methods

2. Synthesis of BODIPY-OSi

3. Kinetics of fluorescence enhancement profile

4. UPLC-Mass spectra of BODIPY-OSi and BODIPY-OSi + TBAF

5. 1H NMR and 13C NMR spectra

6. HRMS spectrum
1. General Methods

All chemical reagents and solvents for synthesis were purchased from commercial suppliers and were used without further purification. 1H NMR and 13C NMR spectra were recorded on a Bruker AV-400 spectrometer with chemical shifts reported in ppm (in CDCl$_3$, TMS as internal standard) at room temperature. Mass spectra were measured on a HP 1100 LC-MS spectrometer.

UV-vis absorption spectra were recorded on a Varian Cary 100 spectrophotometer. Fluorescence spectra were measured with a Varian CARY Eclipse Fluorescence spectrophotometer. Spectral-grade solvents were used for measurements of UV-vis absorption and fluorescence.

2. Synthesis of BODIPY-OSi

Scheme S1

To a solution of BODIPY-OH (500 mg, 1.24 mmol) in CH$_2$Cl$_2$ (25 mL) was added DBU (234 mg, 1.24 mmol) at -15 °C, the resulted solution was stirred for another 15 min at room temperature, the resulted solution was stirred for another 15 min at -15 °C, followed by the addition of tert-butylidiphenylchlorosilane (681 mg, 2.48
mmol). The resulting mixture was stirred for 10 min at -15 °C, quenched with 0.1M HCl (1.0 mL), extracted with CH₂Cl₂, washed with H₂O. The combined organic extracts were dried with anhydrous Na₂SO₄, and the solvent was removed in vacuo. The crude product was purified by flash chromatography to afford 557 mg (70%).

BODIPY-OSi: ¹H NMR (400 MHz, CDCl₃): δ 1.00-1.04 (t, J = 7.6 Hz, 3H, -CH₂CH₃), 1.11 (s, 9H, -CH₃), 1.36 (s, 3H, -CH₃), 1.49 (s, 3H, -CH₃), 2.33-2.38 (q, J = 7.6 Hz, 2H, -CH₂CH₃), 2.67 (s, 3H, -CH₃), 6.29-6.31 (dd, J₁ = 2.4 Hz, J₂ = 2 Hz, 1H), 7.02-7.04 (d, J = 8.8 Hz, 1H), 7.29-7.31 (m, 3H), 7.34-7.42 (m, 6H), 7.50-7.51 (m, 3H), 7.75-7.77 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 11.27, 12.15, 13.39, 14.26, 17.20, 19.57, 26.55, 103.98, 115.90, 121.54, 127.17, 127.78, 128.29, 129.10, 129.23, 129.67, 129.86, 132.52, 133.01, 133.42, 134.81, 135.18, 135.39, 135.53, 135.70, 136.73, 141.37, 141.51, 146.69, 157.68, 161.78; HRMS (ESI) calcd for C₄₀H₄₀BF₂N₂OSi: 641.2971; found: 641.2986. [M - H].
Kinetics of fluorescence enhancement profile

Fig. S1. Kinetics of fluorescence enhancement profile of BODIPY-OSi (5×10^{-6} M) at 676 nm in the presence of F$^-$ (50 equiv), $\lambda_{ex} = 644$ nm. The spectra data were obtained at room temperature.
3. UPLC-Mass spectra of BODIPY-OSi and BODIPY-OSi + TBAF

Fig. S2. UPLC-Mass spectra of BODIPY-OSi and BODIPY-OSi + TBAF.
4. 1H NMR and 13C NMR spectra

Fig. S3. 1H NMR and 13C NMR spectra of BODIPY-OSi (in CDCl$_3$)
5. HRMS spectrum

Fig. S4. HRMS spectrum of BODIPY-OSi