Supporting Information

Controlled network structure and its correlation with physical properties of polycarboxyl octaphenylsilsesquioxanes-based inorganic-organic polymer nanocomposites

Zhonggang Wang*, Zhanbin Wang, Hao Yu, Linni Zhao and Jing Qu

Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116012,
People’s Republic of China

Email: zgwang@dlut.edu.cn

Contents

Table 1S. LC-MS data of cleaved products of COOH_{5.5}OPS.

Table 2S. LC-MS data of cleaved products of COOH_{7.0}OPS.

Fig. 1S FTIR of polybromo-OPS of (a) Br_{6.4}OPS, (b) Br_{9.0}OPS

Fig. 2S FTIR of polycarboxyl-OPS of (a) COOH_{5.5}OPS, (b) COOH_{7.0}OPS

Fig. 3S LC spectrum of cleaved products of COOH_{5.5}OPS

Fig. 4S LC spectrum of cleaved products of COOH_{7.0}OPS

Fig. 5S DSC curves of epoxy resins with different content of polycarboxyl-OPS
<table>
<thead>
<tr>
<th>LC/MS Peak/(min)</th>
<th>Cleaved products</th>
<th>Structure</th>
<th>(mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.59</td>
<td>Phenol</td>
<td></td>
<td>30.8</td>
</tr>
<tr>
<td>13.53</td>
<td>Hydroxybenzoic acid</td>
<td></td>
<td>42.9</td>
</tr>
<tr>
<td>16.02</td>
<td>Hydroxybenzoic acid</td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>22.82, 24.23, 25.94, 27.85</td>
<td>Monobromo hydroxybenzoic acid</td>
<td></td>
<td>20.8</td>
</tr>
<tr>
<td>33.25, 33.78</td>
<td>Dibromo hydroxybenzoic acid</td>
<td></td>
<td>1.2</td>
</tr>
</tbody>
</table>
Table 2S. LC-MS data of cleaved products of COOH$_{7,0}$OPS

<table>
<thead>
<tr>
<th>LC/MS Peak/(min)</th>
<th>Cleaved products</th>
<th>Structure</th>
<th>(mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.64</td>
<td>Phenol</td>
<td></td>
<td>10.2</td>
</tr>
<tr>
<td>13.71</td>
<td>Hydroxybenzoic acid</td>
<td></td>
<td>47.4</td>
</tr>
<tr>
<td>16.33</td>
<td>Hydroxybenzoic acid</td>
<td></td>
<td>16.9</td>
</tr>
<tr>
<td>21.31, 24.08, 24.35, 25.99</td>
<td>Monobromo hydroxybenzoic acid</td>
<td></td>
<td>20.7</td>
</tr>
<tr>
<td>31.74, 32.31 35.36, 36.52</td>
<td>Dibromo hydroxybenzoic acid</td>
<td></td>
<td>4.8</td>
</tr>
</tbody>
</table>
Fig. 1S FTIR of polybromo-OPS of (a) Br$_{6.4}$OPS, (b) Br$_{9.0}$OPS
Fig. 2S FTIR of polycarboxyl-OPS of (a) COOH$_{5.5}$OPS, (b) COOH$_{7.0}$OPS
Fig. 3S LC spectrum of cleaved products of COOH$_{5.5}$OPS
Fig. 4S LC spectrum of cleaved products of COOH$_{5.5}$OPS
Fig. 5S DSC curves of epoxy resins with different content of polycarboxyl-OPS