Electronic Supplementary Information (ESI)

Novel “turn-on” fluorescent chemodosimeters based on thioxanthen-9-thione for the selective detection of mercuric ion in aqueous media

Li Ding, Qi Zou, Yi Qu and Jianhua Su*

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, PR China

* Corresponding author. Tel.: +86 21 64252288; fax.: +86 21 64252288.
E-mail address: bbsjh@ecust.edu.cn (Jianhua Su)

Figure S1. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound DB-TXO.
Figure S2. ESI-MS spectrum of compound DB-TXO.

Figure S3. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound DP-TXO.
Figure S4. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound DP-TXO.

Monoisotopic Mass, Even Electron ions
217 formula(s) evaluated with 188 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 0-80 H: 0-160 O: 0-16 S: 0-3

ECUST Institute of Fine Chem

Figure S5. ESI-MS spectrum of compound DP-TXO.
Figure S6. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound DP-TXT.

Figure S7. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound DP-TXT.
Figure S8. ESI-MS spectrum of compound DP-TXT.

Figure S9. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound BDPA-TXO.
Figure S10. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound BDPA-TXO.

Figure S11. ESI-MS spectrum of compound BDPA-TXO.
Figure S12. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound BDPA-TXT.

Figure S13. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound BDPA-TXT.
Figure S14. ESI-MS spectrum of compound BDPA-TXT.

Figure S15. A plot of fluorescence intensity change of DP-TXT (10.0 μM) against varied concentrations of Hg²⁺ (5.0–30.0 μM) in CH₃CN–H₂O (5:5, v/v) (λₑₓ = 309 nm, slit: 5 nm/5 nm, PMT Volts: 610.). R² = 0.9934, k = 3.7×10⁷ au/M. The Standard deviation (σ = 0.26) was obtained by fluorescence responses (10-times of consecutive scanning on the Varian Cary Eclipse Fluorescence Spectrophotometer). Therefore, the detection limit was calculated by the formula (3σ/k) and gave a result 21 nM.
Figure S16. Partial 1H NMR spectrum (400 MHz, CDCl$_3$) of chemodosimeter DP-TXT before and after addition of excessive Hg$^{2+}$

Figure S17. Partial 1H NMR spectrum (400 MHz, DMSO-d_6) of chemodosimeter BDPA-TXT before and after addition of excessive Hg$^{2+}$
Figure S18. A plot of fluorescence intensity change of BDPA-TXT (10.0 μM) against varied concentrations of Hg\(^{2+}\) (5.0–40.0 μM) in DMSO–H\(_2\)O (9:1, v/v) (λ\(_{\text{ex}}\) = 357 nm, slit: 5 nm/5 nm, PMT Volts: 800.), \(R^2 = 0.9944\), \(k = 1.2 \times 10^7\) au/M. The Standard deviation (σ = 0.30) was obtained by fluorescence responses (10-times of consecutive scanning on the Varian Cary Eclipse Fluorescence Spectrophotometer). Therefore, the detection limit was calculated by the formula (3σ/k) and gave a result 75 nM.
Figure S19. HRMS (ESI) spectra of compound BDPA-TXT in the absence and in the presence of Hg$^{2+}$.
Figure S20. HRMS (ESI) spectra of compound DP-TXT in the absence and in the presence of Hg$^{2+}$.

Figure S21. (a) Emission ratiometric response of DP-TXT to various metal ions. [DP-TXT] = 1.0×10$^{-5}$ M, [Hg$^{2+}$] = 3.0×10$^{-5}$ M, [M$^{n+}$] = 1.0×10$^{-4}$ M. (b) Emission ratiometric response of BDPA-TXT to various metal ions. [BDPA-TXT] = 1.0×10$^{-5}$ M, [Hg$^{2+}$] = 4.0×10$^{-5}$ M, [M$^{n+}$] = 1.0×10$^{-4}$ M.