Electronic Supplementary Information

One-step preparation of ZnO nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation

Jingqi Tian, Sen Liu, Haiyan Li, Lei Wang, Yingwei Zhang, Yonglan Luo, Abdullah M. Asiri, Abdulrahman O. Al-Youbi and Xuping Sun

State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.

Graduate School of the Chinese Academy of Sciences, Beijing 100039, China.

Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

*To whom correspondence should be addressed. Phone/Fax: (+86)-431-85262065.
E-mail: sunxp@ciac.jl.cn

Experimental section

Graphite powder, H2SO4, NaNO3 and H2O2 (30%) were purchased from Aladin Ltd. (Shanghai, China). Ammonia (25wt%), HCl (36wt%) and KMnO4 were purchased from Beijing Chemical Corp. Zn plate was purchased from Tianjin Guangfu Fine Chemical Research Institute. 8,13-Bis(1,2
dihydroxyethyl)-3,7,12,17-tetramethyl-21H,23H-porphine-2,18-dipropionic acid zinc(II) (ZnP) was purchased from Frontier Scientific, Inc. The water used throughout all experiments was purified through a Millipore system.

GO was prepared from natural graphite powder through a modified Hummer’s method\(^1\) using graphite powder, H\(_2\)SO\(_4\), NaNO\(_3\) and H\(_2\)O\(_2\) (30\%) as the starting materials. As-synthesized GO was dispersed into individual sheets in distilled water at a concentration of 0.25 mg/mL with the aid of ultrasound for further use.

The preparation of rGO-ZnO composites was carried out as follows: In a typical experiment, 5 mL of ammonia solution (25\%) was added into 5 mL of GO dispersion (0.25 mg/mL) at ambient temperature. The mixture was ultrasounded for 2 min to obtain a homogeneous solution. After that, a Zn plate with surface area of 4 cm\(^2\) was immersed in the above solution and a 20-min untrasonication was applied. The brown GO suspension changed into black and sinking at the end. The samples were washed with water twice. For rGO-ZnO-ZnP preparation, as-synthesized rGO-ZnO dispersion was stirred with 1 mg/ml ZnP ethanol solution in dark for 1 h. Then the sample was collected by centrifugation and washed with ethanol.

UV-vis spectra were obtained on a UV-1800 Spectrophotometer. Transmission electron microscopy (TEM) measurements were made on a HITACHI H-8100 electron microscopy (Hitachi, Tokyo, Japan) with an accelerating voltage of 200 kV. The sample for TEM characterization was prepared by placing a drop of sample solution on carbon-coated copper grid and dried at room temperature. Scanning
electron microscopy (SEM) measurements were made on a XL30 ESEM FEG
scanning electron microscope at an accelerating voltage of 20 kV. Samples for SEM
examination were made by placing a drop of the dispersion on a glass slide and
air-dried at room temperature. Raman spectra were obtained on J-Y T64000 Raman
Spectrometer with 514.5 nm wavelength incident laser light. Photoelectrochemical
measurements were composed of a CHI 660D electrochemical analyzer (CH
Instruments, Inc., Shanghai), a 500 W xenon lamp (CHFXQ500W, Beijing) with
cutoff filter ion (\(\lambda > 400\) nm), and a homemade three-electrode cell using a
KCl-saturated Ag/AgCl electrode, a platinum wire, and rGO-ZnO with or without ZnP
as the reference, counter, and working electrodes, respectively. The rGO-ZnO
modified ITO electrode was prepared by dip-coating method: typically, 100 μL of
rGO-ZnO suspensions was dip-coated onto a 0.5 cm \(\times\) 4 cm indium-tin oxide (ITO)
glass electrode. The electrode was then exposed to an infrared light to eliminate the
solvent. For rGO-ZnO-ZnP, ZnO-ZnP and ZnP modified ITO electrode, the same
method was followed except for the electrodes were air-dried in dark at room
temperature. The supporting electrolyte was 1 M Na\(_2\)SO\(_4\), which was purged with
high-purity nitrogen for at least 15 min prior to experiments.

Reference

Fig. S1 Raman spectra of (A) GO and (B) rGO-ZnO composites.
Fig. S2 UV-vis absorption spectra of the rGO-ZnO and rGO-ZnO-ZnP modified ITO electrode.