Supporting Information

Synthesis of substituted pyrazolo[4,3-\textit{b}]pyridines via Copper-mediated intramolecular C-N cross-coupling of primary allylamines

Maloy Nayak and Sanjay Batra*

Medicinal and Process Chemistry Division, Central Drug Research Institute (CSIR), PO Box 173, Lucknow 226 001, India
e-mail: batra_san@yahoo.co.uk

Contents

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>General Procedure and spectroscopic data for 4-iodopyrazolecarbaldehydes</td>
<td>S-2</td>
</tr>
<tr>
<td>2.</td>
<td>General Procedure and spectroscopic data for MBH adducts</td>
<td>S-12</td>
</tr>
<tr>
<td>3.</td>
<td>General Procedure and spectroscopic data for MBH acetates</td>
<td>S-17</td>
</tr>
<tr>
<td>4.</td>
<td>General Procedure and spectroscopic data for primary allylamines</td>
<td>S-22</td>
</tr>
<tr>
<td>5.</td>
<td>General Procedure and spectroscopic data for aminoalcohols</td>
<td>S-27</td>
</tr>
<tr>
<td>6.</td>
<td>Spectroscopic data for secondary allylamines</td>
<td>S-28</td>
</tr>
<tr>
<td>7.</td>
<td>Copies of 1H- and 13C- NMR of all compounds</td>
<td>S-30</td>
</tr>
</tbody>
</table>
General Procedure for the preparation of compounds 1a-j and 6a-c. To a stirred solution of appropriate acetophenone (5 mmol) in dry toluene (25 mL) was added NaH (12.5 mmol, 60% in oil) and the mixture was warmed to 40 °C. At this temperature a solution of diethyl oxalate (7.46 mmol) in dry toluene (20 mL) was added dropwise under stirring. The reaction mixture was refluxed for another 1.5 h. After completion of reaction, the mixture was cool to room temperature and neutralized with 5% HCl solution and the resultant solution was pass through a Celite bed. Thereafter layers were separated and the organic layer was dried over anhydrous Na$_2$SO$_4$ and concentrated under vacuum. Column chromatography of the crude product over silica gel furnished the pure 2,4-diketoester derivatives in 90-95% yield. To a stirred solution of 2,4-diketoester derivatives (5 mmol) in EtOH (25 mL) was added appropriately substituted hydrazine (5 mmol) and TFA (0.5 mmol) and the reaction mixture was heated at reflux for 2 h. Thereafter EtOH was evaporated and water (50 mL) was added and extracted with EtOAc (3x25 mL). The combined organic layer was dried and evaporated under vacuum to obtain a mixture of regioisomeric 3- and 5- pyrazole carboxylate which were used as such for further reaction.

To a stirred solution of 3- and 5- pyrazole carboxylates (5 mmol) in dry THF (30 mL) was added LiAlH$_4$ (5 mmol) at 0 °C and stirred at room temperature for 1 h. Thereafter reaction mixture was again cool to 0 °C and quenched with 10 % aq NaOH solution. Thereafter reaction mixture was passed through a Celite bed and washed with EtOAc. The filtrate was dried and evaporated under vacuum to obtain the corresponding alcohols which were seperated via column chromatography to obtain the substituted (1- substituted phenyl or methyl-1H-pyrazol-3-yl)methanol as the major product (61-74%) and (1-substituted phenyl or methyl-1H-pyrazol-5-yl)methanol as the minor product (12-20%). To a stirred solution of appropriate alcohol (5 mmol) in dry CH$_2$Cl$_2$ (30 mL) was added PCC (10 mmol) and the reaction mixture was stirred at room temperature for 8 h. After completion, the reaction, mixture was passed through a small band of silica gel using hexanes-EtOAc (85:15, v/v) as eluent to obtain pure substituted 3-pyrazolecarbaldehydes (55-57 %) or substituted 5-pyrazolecarbaldehydes (75-80 %) as solids.

To a stirred solution of pyrazole-3-carboxaldehyde or pyrazole-5-carboxaldehyde (1 mmol) in dry CHCl$_3$ (50 mL) K$_2$CO$_3$ (3 mmol) was added and cool to 0 °C in icebath. Thereafter ICl (3 mmol) was added dropwise and stirred at room temperature for 10 h. On completion of the reaction Na$_2$SO$_3$ solution (30 mL) was added and layers were seperated. The aqueous layer was again extracted with CHCl$_3$ (2 x 25 ml). The organic layers were combined, washed with H$_2$O.
(50 mL) and brine (50 mL), dried over Na₂SO₄ and concentrated under vacuum to obtain the crude product which was crystallized with EtOAc-Hexanes to afford pure substituted 4-iodopyrazole-3-carboxaldehydes or 4-iodopyrazole-5-carboxaldehydes as white solid (92-96%).

![Structure of 5-(4-Fluorophenyl)-1-phenyl-1H-pyrazol-3-yl]methanol. 93 % as a white solid (402 mg from 500 mg); mp 84-85 °C; Rᵢ = 0.17 (hexanes: EtOAc, 80:20, v/v); IR (KBr): νₘₐₓ 3420 (OH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.22 (brs), 4.79 (s, 2H), 6.49 (s, 1H), 6.99 (t, 2H, J = 8.5 Hz), 7.17-7.21 (m, 2H), 7.26-7.27 (m, 2H), 7.32-7.35 (m, 3H) ppm; ESIMS (m/z) 269.3 [M+H]⁺.

![Structure of 5-(2-Chlorophenyl)-1-phenyl-1H-pyrazol-3-yl]methanol. 93 % as a white solid (405 mg from 500 mg); mp 114-115 °C; Rᵢ = 0.15 (hexanes: EtOAc, 80:20, v/v); IR (KBr): νₘₐₓ 3422 (OH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.24 (brs, 1H), 4.82 (s, 2H), 6.52 (s, 1H), 7.24-7.33 (m, 7H), 7.39 (d, 1H, J = 7.7 Hz) ppm; ESIMS (m/z) 285.3 [M+H]⁺.

![Structure of 5-(4-Methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl]methanol. 95 % as a white solid (413 mg from 500 mg); mp 85-87 °C; Rᵢ = 0.18 (hexanes: EtOAc, 80:20, v/v); IR (KBr): νₘₐₓ 3416 (OH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.19 (brs, 1H), 3.80 (s, 3H), 4.78 (s, 2H), 6.46 (s, 1H), 6.82 (d, 2H, J = 8.8 Hz), 7.14 (d, 2H, J = 8.8 Hz), 7.27-7.32 (m, 5H) ppm; ESIMS (m/z) 281.3 [M+H]⁺.
[5-(4-Nitrophenyl)-1-phenyl-1H-pyrazol-3-yl]methanol. 90 % as a white solid (394 mg from 500 mg); mp 145-146 °C; R_f = 0.18 (hexanes: EtOAc, 80:20, v/v); IR (KBr): v_max 3416 (OH) cm^{-1}; 1H NMR (300 MHz, CDCl3): δ 2.19 (brs, 1H, CH2O), 4.81 (s, 2H, C6H2OH), 6.66 (s, 1H, ArH), 7.26-7.28 (m, 2H, ArH), 7.37-7.39 (m, 5H, ArH), 8.16 (d, 2H, J = 8.8 Hz, ArH) ppm; ESIMS (m/z) 296.3 [M+H]^+.

(1-Methyl-5-phenyl-1H-pyrazol-3-yl)methanol. 92 % as a white solid (376 mg from 500 mg); mp 96-97 °C; R_f = 0.11 (hexanes: EtOAc, 80:20, v/v); IR (KBr): v_max 3435 (OH) cm^{-1}; 1H NMR (300 MHz, CDCl3): δ 2.31 (brs, 1H), 3.85 (s, 3H), 4.71 (s, 2H), 6.31 (s, 1H), 7.41-7.45 (m, 5H) ppm; ESIMS (m/z) 189.3 [M+H]^+.

[1-Methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]methanol. 95 % as a white solid (393 mg from 500 mg); mp 68-70 °C; R_f = 0.11 (hexanes: EtOAc, 80:20, v/v); IR (KBr): v_max 3440 (OH) cm^{-1}; 1H NMR (300 MHz, CDCl3): δ 2.41 (s, 3H), 3.83 (s, 3H), 4.70 (s, 2H), 6.26 (s, 1H), 7.24-7.28 (m, 4H) ppm; ESIMS (m/z) 203.3 [M+H]^+.

[5-(2-Chlorophenyl)-1-methyl-1H-pyrazol-3-yl]methanol. 94 % as a white solid (395 mg from 500 mg); mp 133-134 °C; R_f = 0.10 (hexanes: EtOAc, 80:20, v/v); IR (KBr): v_max 3432 (OH) cm^{-1}.
1H NMR (300 MHz, CDCl$_3$): 1.98 (brs, 1H), 3.96 (s, 3H), 4.71 (s, 2H), 6.71 (s, 1H), 7.22-7.32 (m, 2H), 7.41-7.44 (m, 1H), 7.76 (dd, 1H, $J = 1.7$ & 7.5 Hz) ppm; ESIMS (m/z) 223.3 [M+H]$^+$.

(1,3-Diphenyl-1H-pyrazol-5-yl)methanol. 93 % as a white solid (398 mg from 500 mg); mp 99-100 °C; R$_f$ = 0.25 (hexanes: EtOAc, 80:20, v/v); IR (KBr): ν_{max} 3435 (OH) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 2.14 (brs, 1H), 4.67 (s, 2H), 6.75 (s, 1H), 7.31-7.51 (m, 6H), 7.65 (d, 2H, $J = 7.6$ Hz), 7.86-7.88 (m, 2H) ppm; ESIMS (m/z) 251.3 [M+H]$^+$.

[3-(4-Methylphenyl)-1-phenyl-1H-pyrazol-5-yl]methanol. 91 % as a white solid (393 mg from 500 mg); mp 92-93 °C; R$_f$ = 0.24 (hexanes: EtOAc, 80:20, v/v); IR (KBr): ν_{max} 3432 (OH) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 2.00 (brs, 1H, CH$_2$OH), 2.38 (s, 3H, CH$_3$), 4.69 (s, 2H, CH$_2$OH), 6.73 (s, 1H, ArH), 7.22 (d, 2H, $J = 7.9$ Hz, ArH), 7.39 (t, 1H, $J = 7.2$ Hz, ArH), 7.49 (t, 2H, $J = 7.5$ Hz, ArH), 7.66 (d, 2H, $J = 7.5$ Hz, ArH), 7.76 (d, 2H, $J = 7.9$ Hz, ArH) ppm; ESIMS (m/z) 265.3 [M+H]$^+$.

[3-(4-Chlorophenyl)-1-phenyl-1H-pyrazol-5-yl]methanol. 94 % as a white solid (409 mg from 500 mg); mp 91-92 °C; R$_f$ = 0.23 (hexanes: EtOAc, 80:20, v/v); IR (KBr): ν_{max} 3429 (OH) cm$^{-1}$;
1H NMR (300 MHz, CDCl$_3$): δ 1.96 (brs, 1H, CH$_2$O), 4.70 (s, 2H, CH$_2$OH), 6.74 (s, 1H, ArH), 7.37-7.41 (m, 4H, ArH), 7.48-7.53 (m, 3H, ArH), 7.65 (d, 2H, J = 7.5 Hz, ArH), 7.80 (d, 2H, J = 8.4 Hz, ArH) ppm; ESIMS (m/z) 285.3 [M+H]$^+$.

(1-Benzyl-3-phenyl-1H-pyrazol-5-yl)methanol. 92% as colourless oil (397 mg from 500 mg); R_f = 0.24 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν_{max} 3432 (OH) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 1.65 (brs, 1H), 4.58 (s, 2H), 5.47 (s, 2H), 6.56 (s, 1H), 7.29-7.32 (m, 4H), 7.37-7.42 (m, 4H), 7.81 (d, 2H, $J = 7.6$ Hz) ppm; ESIMS (m/z) 265.1 [M+H]$^+$.

5-(4-Fluorophenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde. 74% as a white solid (367 mg from 500 mg); mp 76-77°C; R_f = 0.44 (hexanes: EtOAc, 80:20, v/v); IR (KBr): ν_{max} 1700 (CHO) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 6.99 (s, 1H), 7.04 (d, 2H, $J = 8.5$ Hz), 7.18-7.22 (m, 2H), 7.30-7.34 (m, 2H), 7.40-7.42 (m, 3H), 10.07 (s, 1H, CHO) ppm; ESIMS (m/z) 267.3 [M+H]$^+$.

5-(2-Chlorophenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde. 74% as a white solid (367 mg from 500 mg); mp 103-104°C; R_f = 0.45 (hexanes: EtOAc, 80:20, v/v); IR (KBr): ν_{max} 1695 (CHO) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 7.03 (s, 1H), 7.26-7.44 (m, 9H), 7.11 (d, 1H, $J = 3.0$ Hz) ppm; ESIMS (m/z) 283.3 [M+H]$^+$.
5-(4-Methoxyphenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde. 76 % as a white solid (377 mg from 500 mg); mp 159-160 °C; R_f = 0.43 (hexanes: EtOAc, 80:20, v/v); IR (KBr): v_max 1698 (CHO) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.81 (s, 3H, OMe), 6.84 (d, 2H, J = 8.3 Hz, ArH), 6.96 (s, 1H, ArH), 7.14 (d, 2H, J = 8.3 Hz, ArH), 7.36-7.39 (m, 5H, ArH), 10.07 (s, 1H, CHO) ppm; ESIMS (m/z) 279.3 [M+H]⁺.

5-(4-Nitrophenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde. 74 % as a yellow solid (367 mg from 500 mg); mp 173-175 °C; R_f = 0.40 (hexanes: EtOAc, 80:20, v/v); IR (KBr): v_max 1700 (CHO) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.14 (s, 1H), 7.33-7.34 (m, 2H), 7.40 (d, 2H, J = 8.8 Hz), 7.44-7.46 (m, 3H), 8.19 (d, 2H, J = 8.8 Hz), 10.09 (s, 1H) ppm; ESIMS (m/z) 294.3 [M+H]⁺.

1-Methyl-5-phenyl-1H-pyrazole-3-carbaldehyde. 75 % as a white solid (371 mg from 500 mg); mp 102-103 °C; R_f = 0.38 (hexanes: EtOAc, 80:20, v/v); IR (KBr): v_max 1703 (CHO) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.97 (s, 3H), 6.83 (s, 1H), 7.41-7.49 (m, 5H), 9.98 (s, 1H) ppm; ESIMS (m/z) 187.3 [M+H]⁺.
1-Methyl-5-(4-methylphenyl)-1H-pyrazole-3-carbaldehyde. 76 % as a white solid (376 mg from 500 mg); mp 150-152 °C; Rf = 0.37 (hexanes: EtOAc, 80:20, v/v); IR (KBr): νmax 1697 (CHO) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.42 (s, 3H), 3.96 (s, 3H), 6.80 (s, 1H), 7.21-7.30 (m, 4H), 9.97 (s, 1H) ppm; ESIMS (m/z) 201.3 [M+H]⁺.

![Chemical structure of 1-Methyl-5-(4-methylphenyl)-1H-pyrazole-3-carbaldehyde](image)

5-(2-Chlorophenyl)-1-methyl-1H-pyrazole-3-carbaldehyde. 72 % as a white solid (357 mg from 500 mg); mp 75-76 °C; Rf = 0.39 (hexanes: EtOAc, 80:20, v/v); IR (KBr): νmax 1701 (CHO) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 4.25 (s, 3H), 7.29-7.36 (m, 2H), 7.44 (s, 1H), 7.47 (dd, J = 1.5, 7.2 Hz), 7.83 (dd, J = 2.1, 7.4 Hz), 9.91 (s, 1H) ppm; ESIMS (m/z) 221.3 [M+H]⁺.

![Chemical structure of 5-(2-Chlorophenyl)-1-methyl-1H-pyrazole-3-carbaldehyde](image)

1,3-Diphenyl-1H-pyrazole-5-carbaldehyde. *ARKIVOC 2007*, xiv, 185-203.

![Chemical structure of 1,3-Diphenyl-1H-pyrazole-5-carbaldehyde](image)

![Chemical structure of 1-Phenyl-3-(4-methylphenyl)-1H-pyrazole-5-carbaldehyde](image)

![Chemical structure of 3-(4-Chlorophenyl)-1-phenyl-1H-pyrazole-5-carbaldehyde](image)
1-Benzyl-3-phenyl-1^H^-pyrazole-5-carbaldehyde. 81 % as a white solid (402 mg from 500 mg); mp 110-112 °C; R_f = 0.47 (hexanes: EtOAc, 80:20, v/v); IR (KBr): \(\nu_{\text{max}} \) 1688 (CHO) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 5.77 (s, 2H), 7.19 (s, 1H), 7.27-7.46 (m, 8H), 7.85 (d, 2H, \(J = 8.0 \) Hz), 9.87 (s, 1H) ppm; ESIMS (m/z) 263.1 [M+H]^+.

4-Iodo-1,5-diphenyl-1^H^-pyrazole-3-carbaldehyde (1a). ref- ARKIVOC 2007, xiv, 185-203.

4-Iodo-5-(4-methylphenyl)-1-phenyl-1^H^-pyrazole-3-carbaldehyde (1b). ref- ARKIVOC 2007, xiv, 185-203.

5-(4-Chlorophenyl)-4-iodo-1-phenyl-1^H^-pyrazole-3-carbaldehyde (1c). ref- ARKIVOC 2007, xiv, 185-203.

5-(4-Fluorophenyl)-4-iodo-1-phenyl-1^H^-pyrazole-3-carbaldehyde (1d). 95 % as a white solid (700 mg from 500 mg); mp 124-125 °C; R_f = 0.35 (hexanes: EtOAc, 90:10, v/v); IR (KBr): \(\nu_{\text{max}} \) 1703 (CHO) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 7.09 (t, 2H, \(J = 8.6 \) Hz), 7.22-7.29 (m, 4H), 7.35-7.40 (m, 3H), 10.08 (s, 1H) ppm; \(^{13}\)C
NMR (75 MHz, CDCl$_3$): δ 62.4, 116.0, 116.3, 125.1, 129.0, 129.1, 129.4, 129.5, 132.6, 132.7, 139.3, 146.0, 149.2, 165.1, 186.0 ppm; ESIMS (m/z) 393.0 [M+H]$^+$; Anal. Calcd. for C$_{16}$H$_{10}$F_{i}N$_2$O (Exact Mass: 391.9822); C, 49.00; H, 2.57; N, 7.14. Found C, 49.19; H, 2.71; N, 6.98.

5-(2-Chlorophenyl)-4-iodo-1-phenyl-1H-pyrazole-3-carbaldehyde (1e). 96 % as a white solid (694 mg from 500 mg); mp 86-87 °C; R_f = 0.34 (hexanes: EtOAc, 90:10, v/v); IR (KBr): ν_{max} 1693 (CHO) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 7.26-7.47 (m, 9H, ArH), 10.11 (s, 1H, CHO) ppm; ESIMS (m/z) 409.0 [M+H]$^+$; Anal. Calcd. for C$_{16}$H$_{10}$ClIN$_2$O (Exact Mass: 407.9526); C, 47.03; H, 2.47; N, 6.86. Found C, 47.23; H, 2.29; N, 7.01.

4-Iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde (1f). 96 % as a white solid (698 mg from 500 mg); mp 159-161 °C; R_f = 0.37 (hexanes: EtOAc, 90:10, v/v); IR (KBr): ν_{max} 1700 (CHO) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 6.90 (2H, J = 8.7 Hz), 7.18 (2H, J = 8.7 Hz), 7.26 (s, 2H), 7.33-7.35 (m, 3H), 10.08 (s, 1H) ppm; ESIMS (m/z) 405.1 [M+H]$^+$; Anal. Calcd. for C$_{17}$H$_{13}$IN$_2$O$_2$ (Exact Mass: 404.0022); C, 50.51; H, 3.24; N, 6.93. Found C, 50.71; H, 3.40; N, 6.75.

4-Iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde (1g). 95 % as a white solid (679 mg from 500 mg); mp 164-166 °C; R_f = 0.34 (hexanes: EtOAc, 90:10, v/v); IR (KBr): ν_{max} 1696 (CHO) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 7.21-7.25 (m, 2H), 7.38-7.40 (m, 3H), 7.48 (2H, J = 8.7 Hz), 8.25 (2H, J = 8.7 Hz), 10.10 (s, 1H) ppm; ESIMS (m/z) 420.1 [M+H]$^+$; Anal. Calcd. for C$_{16}$H$_{10}$N$_3$O$_3$ (Exact Mass: 418.9767); C, 45.85; H, 2.40; N, 10.02. Found C, 46.09; H, 2.61; N, 9.80.

4-Iodo-1-methyl-5-phenyl-1H-pyrazole-3-carbaldehyde (1h). 94 % as a white solid (788 mg from 500 mg); mp 95-96 °C; R_f = 0.28 (hexanes: EtOAc, 90:10, v/v); IR (KBr): ν_{max} 1700 (CHO) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 7.36-7.39 (m, 2H), 7.53-7.56 (m, 3H), 9.97 (s, 1H) ppm; ESIMS (m/z) 313.0 [M+H]$^+$; Anal. Calcd. for C$_{11}$H$_9$IN$_2$O (Exact Mass: 311.9760); C, 42.33; H, 2.91; N, 8.98. Found C, 42.16; H, 2.77; N, 9.10.
4-Iodo-1-methyl-5-(4-methylphenyl)-1H-pyrazole-3-carbaldehyde (1i). ref-7

5-(2-Chlorophenyl)-4-iodo-1-methyl-1H-pyrazole-3-carbaldehyde (1j). 93 % as a white solid (731 mg from 500 mg); mp 97-98 °C; R_f = 0.29 (hexanes: EtOAc, 90:10, v/v); IR (KBr): ν_max 1692 (CHO) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.85 (s, 3H), 7.31 (dd, 1H, J = 1.5, 7.4 Hz), 7.42-7.54 (m, 2H), 7.57-7.60 (m, 1H), 9.98 (s, 1H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ 39.1, 62.2, 127.5, 130.4, 132.0, 132.7, 134.9, 148.1, 185.7 ppm; ESIMS (m/z) 347.0 [M+H]+; Anal. Calcd. for C₁₁H₈ClIN₂O (Exact Mass: 345.9370); C, 38.12; H, 2.33; N, 8.08. Found C, 38.33; H, 2.46; N, 7.89.

4-Iodo-1-methyl-1H-pyrazole-3-carbaldehyde (1k). ref-6

4-Iodo-1,3-diphenyl-1H-pyrazole-5-carbaldehyde (6a). ref- ARKIVOC 2007, xiv, 185-203.

4-Iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazole-5-carbaldehyde (6b) 91 % as a white solid (674 mg from 500 mg); mp 146-147 °C; IR (KBr): ν_max 1689 (CHO) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 7.24-7.26 (m, 2H), 7.52-7.57 (m, 5H), 7.79 (d, 2H, J = 8.0 Hz), 9.90 (s, 1H) ppm; ESIMS (m/z) 389.2 [M+H]+; Anal. Calcd. for C₁₇H₁₃IN₂O (Exact mass: 388.0073); C, 52.60; H, 3.38; N, 7.22. Found C, 52.83; H, 3.57; N, 7.00.

3-(4-Chlorophenyl)-4-iodo-1-phenyl-1H-pyrazole-5-carbaldehyde (6c). 93 % as a white solid (673 mg from 500 mg); mp 151-152 °C; IR (KBr): ν_max 1684 (CHO) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 7.46 (d, 2H, J = 8.4 Hz), 7.52 (s, 5H), 7.85 (d, 2H, J = 8.4 Hz), 9.88 (s, 1H) ppm; ESIMS (m/z) 409.2
[M+H]$^+$; Anal. Calcd. for C$_{16}$H$_{10}$ClIN$_2$O (Exact mass: 407.9526); C, 47.03; H, 2.47; N, 6.86.

Found: C, 47.23; H, 2.11; N, 7.05.

1-Benzyl-4-iodo-3-phenyl-1H-pyrazole-5-carbaldehyde (6l). 96 % as a white solid (711 mg from 500 mg); mp 164-166 °C; R$_f$ = 0.41 (hexanes: EtOAc, 90:10, v/v); IR (KBr): ν_{max} 1685 (CHO) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 5.77 (s, 2H), 7.30-7.35 (m, 5H), 7.43-7.51 (m, 3H), 7.84 (d, 2H, $J = 6.5$ Hz), 9.84 (s, 1H) ppm; ESIMS (m/z) 389.1 [M+H]$^+$; ESI-HRMS Calcd. for C$_{17}$H$_{14}$IN$_2$O [MH]$^+$: 389.0151. Found: 389.0142.

Methyl 2-[hydroxy(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)methyl]acrylate (2a). ref-6

Methyl 2-{hydroxy[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (2b). ref-6

Methyl 2-[5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylate (2c). ref-6

Methyl 2-[5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylate (2d). 88 % as a white solid (537 mg from 500 mg); mp 185-
186 °C; R_f = 0.16 (hexanes: EtOAc, 90:10, v/v); IR (KBr): ν_max 1721 (CO_2Me), 3405 (OH) cm⁻¹;
1H NMR (300 MHz, CDCl$_3$): δ 3.29 (d, 1H, J = 6.9 Hz), 3.82 (s, 3H), 5.76 (d, 1H, J = 6.0 Hz),
6.00 (s, 1H), 6.45 (s, 1H), 7.06 (t, 2H, J = 8.7 Hz), 7.14-7.17 (m, 2H), 7.22-7.28 (m, 5H) ppm;
13C NMR (50 MHz, CDCl$_3$): δ 52.2, 64.3, 68.4, 115.7, 116.1, 124.9, 125.0, 127.1, 127.9, 129.0,
129.1, 132.3, 132.5, 139.7, 140.0, 153.6, 166.8 ppm; ESIMS (m/z) 478.7 [M+H]$^+$; Anal. Calcd.
for C$_{20}$H$_{16}$FIN$_2$O$_3$ (Exact Mass: 478.0190); C, 50.23; H, 3.37; N, 5.86. Found C, 50.41; H, 3.52;
N, 5.70.

Methyl 2-[[5-(2-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylate (2e).
89 % as a white solid (539 mg from 500 mg); mp 93-94 °C; R_f = 0.17 (hexanes: EtOAc,
90:10, v/v); IR (KBr): ν_max 1720 (CO$_2$Me), 3413 (OH) cm⁻¹; 1H NMR (300 MHz, CDCl$_3$): δ 3.34 (d, 1H, J = 7.1 Hz), 3.82 (s, 3H),
5.78 (d, 1H, J = 6.9 Hz), 5.97 (s, 1H), 6.44 (s, 1H), 7.21-7.35 (m, 6H), 7.38-7.45 (m, 3H) ppm;
13C NMR (75 MHz, CDCl$_3$): δ 52.2, 67.1, 68.3, 123.8, 127.1, 127.7, 128.9, 129.5, 130.0, 131.2, 132.6, 134.8, 139.8, 139.9, 140.1,
143.2, 153.3, 166.8 ppm; ESIMS (m/z) 494.7 [M+H]$^+$; Anal. Calcd. for C$_{20}$H$_{16}$ClIN$_2$O$_3$ (Exact Mass: 493.9894); C, 48.56; H, 3.26; N, 5.66. Found C, 48.42; H, 3.09; N, 5.84.

Methyl 2-{hydroxy[4-iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (2f).
88 % as a white solid (534 mg from 500 mg); mp 93-94 °C; R_f = 0.16 (hexanes: EtOAc,
80:20, v/v); IR (KBr): ν_max 1716 (CO$_2$Me), 3430 (OH) cm⁻¹; 1H NMR (300 MHz, CDCl$_3$): δ 3.27 (d, 1H, J = 7.1 Hz), 3.81
(s, 3H), 3.82 (s, 3H), 5.76 (d, 1H, J = 6.5 Hz), 5.99 (s, 1H),
6.44 (s, 1H), 6.88 (d, 2H, J = 8.6 Hz), 7.16-7.19 (m, 4H),
7.25-7.26 (m, 3H) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 52.2, 55.4, 64.0, 68.4, 114.1, 121.9,
124.9, 127.1, 127.6, 128.9, 131.8, 140.1, 144.7, 153.4, 160.1, 166.9 ppm; ESIMS (m/z) 490.8
[M+H]$^+$; Anal. Calcd. for C$_{21}$H$_{19}$IN$_2$O$_4$ (Exact Mass: 490.0390); C, 51.44; H, 3.91; N, 5.71.
Found C, 51.63; H, 3.74; N, 5.86.

Methyl 2-{hydroxy[4-iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (2g).
89 % as colorless oil (536 mg from 500 mg); R_f = 0.14 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν_max 1711 (CO$_2$Me), 3404 (OH) cm⁻¹; 1H NMR (200 MHz, CDCl$_3$): δ 3.30 (d, 1H, J = 7.4 Hz), 3.82 (s, 3H), 5.77 (d, 1H, J = 7.2 Hz), 6.04 (s, 1H), 6.47 (s, 1H), 7.12-7.20 (m, 2H),
7.29-7.32 (m, 3H), 7.46 (d, 2H, J = 8.8 Hz), 8.22 (d, 2H, J = 8.8 Hz) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 52.3, 64.9, 68.5, 123.9, 125.1, 127.2, 128.5, 129.3, 130.8, 131.5, 136.2, 139.3, 139.8, 142.5, 148.0, 154.2, 166.8 ppm; ESIMS (m/z) 505.7 [M+H]$^+$; Anal. Calcd. for C$_{20}$H$_{16}$IN$_3$O$_5$ (Exact Mass: 505.0135); C, 47.54; H, 3.19; N, 8.32. Found C, 47.32; H, 3.39; N, 8.55.

Methyl 2-[hydroxy(4-iodo-1-methyl-5-phenyl-1H-pyrazol-3-yl)methyl]acrylate (2h). 88 % as a colourless oil (561 mg from 500 mg); R$_f$ = 0.21 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν$_{max}$ 1716 (CO$_2$Me), 3425 (OH) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 3.17 (d, 1H, J = 5.6 Hz), 3.79 (s, 3H), 3.80 (m, 3H), 5.68 (d, 1H, J = 4.4 Hz), 5.97 (s, 1H), 6.43 (s, 1H), 7.35-7.38 (m, 2H), 7.44-7.53 (m, 3H) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 38.4, 52.0, 61.0, 68.0, 126.6, 128.7, 129.4, 130.0, 140.1, 145.6, 151.9, 166.7 ppm; ESIMS (m/z) 398.7 [M+H]$^+$; Anal. Calcd. for C$_{15}$H$_{15}$IN$_2$O$_3$ (Exact Mass: 398.0127); C, 45.24; H, 3.80; N, 7.04. Found C, 45.40; H, 3.62; N, 7.18.

Methyl 2-{hydroxy[4-iodo-1-methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]methyl}acrylate (2i). 87 % as a colourless oil (550 mg from 500 mg); R$_f$ = 0.20 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν$_{max}$ 1719 (CO$_2$Me), 3400 (OH) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 2.43 (s, 3H), 2.31 (d, 1H, J = 6.3 Hz), 3.78 (s, 3H), 3.79 (s, 3H), 5.68 (d, 1H, J = 5.5 Hz), 5.98 (s, 1H), 6.43 (s, 1H), 7.24-7.31 (m, 4H) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 21.5, 38.5, 52.1, 61.1, 68.1, 126.7, 129.5, 129.6, 130.0, 140.2, 145.8, 147.5, 151.9, 166.8 ppm; ESIMS (m/z) 412.6 [M+H]$^+$; Anal. Calcd. for C$_{16}$H$_{17}$IN$_2$O$_3$ (Exact Mass: 412.0284); C, 46.62; H, 4.16; N, 6.80. Found C, 45.61; H, 4.28; N, 6.65.

Methyl 2-[[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylate (2j). 86 % as a white solid (537 mg from 500 mg); mp 88-89 °C; R$_f$ = 0.20 (hexanes: EtOAc, 80:20, v/v); IR (KBr): ν$_{max}$ 1717 (CO$_2$Me), 3411 (OH) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 3.20 (d, 1H, J = 6.6 Hz), 3.81 (s, 3H), 5.69 (d, 1H, J = 6.5 Hz), 5.95 (s, 1H), 6.43 (s, 1H), 7.29-7.32 (m, 1H), 7.37-7.48 (m, 2H), 7.53-7.56 (m, 1H) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 38.3, 52.2, 62.0, 68.1, 126.9, 127.2, 129.0, 130.1, 131.4, 132.6, 134.9, 140.1, 143.9, 151.9, 166.8 ppm; ESIMS (m/z) 432.7 [M+H]$^+$; Anal. Calcd. for
Methyl 2-[hydroxy(4-iodo-1-methyl-1\(H\)-pyrazol-3-yl)methyl]acrylate (1k). ref-6

Methyl 2-[hydroxy(4-iodo-1,3-diphenyl-1\(H\)-pyrazol-5-yl)methyl]acrylate (7a). ref-6

Methyl 2-[hydroxy[4-iodo-3-(4-methylphenyl)-1-phenyl-1\(H\)-pyrazol-5-yl]methyl]acrylate (7b). 89 % as a colourless oil (544 mg from 500 mg); \(R_f\) = 0.23 (hexanes: EtOAc, 80:20, v/v); IR (Neat): \(\nu_{\text{max}}\) 1717 (CO \text{2Me}), 3423 (OH) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 2.40 (s, 3H), 3.70 (s, 3H), 5.82 (s, 1H), 5.87 (d, 1H, \(J = 1.4\) Hz), 6.38 (d, 1H, \(J = 1.2\) Hz), 7.24 (s, 1H), 7.44-7.50 (m, 6H), 7.74 (d, 2H, \(J = 8.1\) Hz) ppm; \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 21.5, 52.2, 61.3, 65.8, 126.6, 127.8, 128.7, 128.99, 129.03, 129.1, 129.6, 137.7, 138.4, 139.6, 142.2, 153.1, 165.9 ppm; ESIMS (\(m/z\)) 475.2 [M+H]\(^{+}\); Anal. Calcd. for C\(_{21}\)H\(_{19}\)IN\(_2\)O\(_3\) (Exact Mass: 474.0440); C, 53.18; H, 4.04; N, 5.91. Found C, 53.30; H, 4.19; N, 5.75.

Methyl 2-[[3-(4-chlorophenyl)-4-iodo-1-phenyl-1\(H\)-pyrazol-5-yl]hydroxy)methyl]acrylate (7c). 87 % as a colourless oil (527 mg from 500 mg); \(R_f\) = 0.22 (hexanes: EtOAc, 80:20, v/v); IR (Neat): \(\nu_{\text{max}}\) 1717 (CO \text{2Me}), 3414 (OH) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 3.70 (s, 3H), 5.81 (s, 1H), 5.86 (d, 1H, \(J = 1.6\) Hz), 6.38 (d, 1H, \(J = 1.2\) Hz), 7.41 (d, 2H, \(J = 8.5\) Hz), 7.44-7.48 (m, 5H), 7.81 (d, 2H, \(J = 8.5\) Hz) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)): \(\delta\) 52.3, 61.0, 66.0, 126.6, 127.9, 128.6, 129.1, 129.3,
130.1, 131.1, 134.6, 137.6, 139.6, 142.5, 152.0, 166.0 ppm; ESIMS (m/z) 495.1 [M+H]+; Anal. Calcd. for C_{20}H_{16}ClIN_{2}O_{3} (Exact Mass: 493.9894); C, 48.56; H, 3.26; N, 5.66. Found C, 48.40; H, 3.11; N, 5.85.

Methyl 2-[(1-benzyl-4-iodo-3-phenyl-1H-pyrazol-5-yl)(hydroxy)methyl]acrylate (7l). 90 % as colorless oil (550 mg from 500 mg); R_{f} = 0.19 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν_{max} 1716 (CO_{2}Me), 3406 (OH) cm^{-1}; ¹H NMR (300 MHz, CDCl_{3}): δ 3.22 (s, 1H), 3.78 (s, 3H), 5.55 (s, 2H), 5.57 (s, 1H), 5.93 (s, 1H), 6.28 (s, 1H), 7.24-7.26 (m, 4H), 7.37-7.44 (m, 4H) 7.84 (d, 2H, J = 7.4 Hz) ppm; ESIMS (m/z) 475.0 [M+H]+; Anal. Calcd. for C_{21}H_{19}IN_{2}O_{3} (Exact Mass: 474.0440); C, 53.18; H, 4.04; N, 5.91. Found C, 53.39; H, 3.82; N, 6.07.

![Methyl 2-[(1-benzyl-4-iodo-3-phenyl-1H-pyrazol-5-yl)(hydroxy)methyl]acrylate](image)

2-[Hydroxy(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)methyl]acrylonitrile (11a). ref-6

![2-[Hydroxy(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)methyl]acrylonitrile](image)

2-{Hydroxy[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]methyl}acrylonitrile (11b). ref-6

![2-{Hydroxy[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]methyl}acrylonitrile](image)

2-[[5-(4-Chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylonitrile (11c). ref-6

![2-[[5-(4-Chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylonitrile](image)
2-[[5-(2-Chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylonitrile (11j). 88 % as colorless oil (507 mg from 500 mg); R_{f} = 0.15 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν_{max} 2229 (CN), 3405 (OH) cm^{-1}; ^1H NMR (300 MHz, CDCl3): δ 3.24 (d, 1H, J = 5.9 Hz), 3.75 (s, 3H), 5.38 (d, 1H, J = 3.6 Hz), 6.14 (d, 1H, J = 1.0 Hz), 6.25 (d, 1H, J = 1.3 Hz), 7.32 (dd, 1H, J = 1.5, 7.2 Hz), 7.40-7.50 (m, 2H), 7.56 (dd, 1H, J = 1.4, 7.9 Hz) ppm; ^13C NMR (50 MHz, CDCl3): δ 38.5, 61.4, 69.2, 117.0, 124.5, 127.3, 128.4, 130.2, 131.4, 131.7, 132.5, 134.8, 144.5, 149.7 ppm; ESIMS (m/z) 399.9 [M+H]^+; Anal. Calcd. for C_{14}H_{11}ClIN_{3}O (Exact Mass: 398.9635); C, 42.08; H, 2.77; N, 10.52. Found C, 42.22; H, 2.93; N, 10.32.

General Procedure for the preparation of compounds 3a-k, 8a-c,l and 12a-c,j as Exemplified 3a. To a stirred solution of compound 2a (500 mg, 1.09 mmol) in CH_{2}Cl_{2} (30 mL) was added pyridine (0.114 mL, 1.41 mmol) and cool to 0 °C. There after acetyl chloride (0.116 ml, 1.63 mmol) in dry CH_{2}Cl_{2} (10 mL) was added dropwise and stirred for 1 h. After completion of the reaction, H_{2}O (50 mL) was added to it and layers were seperated. The aqueous layer was then extracted with CH_{2}Cl_{2} (2x25 mL). The combined organic layer was washed with brine (30 mL), dried over anhydrous Na_{2}SO_{4} and concentrated under vacuum. Column chromatography of the crude product over silica gel furnished the pure 3a as a colorless oil (ethyl acetate/hexanes, 1:19; yield: 513 mg, 94 %).

Methyl 2-[(acetyloxy)(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)methyl]acrylate (3a). ref-6

Methyl 2-[(acetyloxy)(4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl)methyl]acrylate (3b). ref-6
Methyl 2-{(acetyloxy)[5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (3c). ref-6

Methyl 2-{(acetyloxy)[5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (3d). 92 % as a white solid (501 mg from 500 mg); mp 130-131 °C; Rf = 0.33 (hexanes: EtOAc, 90:10, v/v); IR (KBr): νmax 1736 (COMe & CO2Me) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.20 (s, 3H), 3.79 (s, 3H), 6.00 (s, 1H), 6.53 (s, 1H), 6.87 (s, 1H), 7.02-7.08 (m, 2H), 7.11-7.15 (m, 2H), 7.22-7.26 (m, 5H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 21.1, 52.3, 66.0, 68.0, 115.7, 116.0, 125.0, 125.1, 127.1, 128.0, 129.0, 129.1, 132.4, 132.5, 137.2, 139.6, 144.0, 150.8, 161.4, 165.6, 169.6 ppm; ESIMS (m/z) 542.9 [M+Na]⁺; Anal. Calcd. for C₂₂H₁₈F₁N₂O₄ (Exact Mass: 520.0295); C, 50.79; H, 3.49; N, 5.38. Found C, 50.92; H, 3.64; N, 5.24.

Methyl 2-{(acetyloxy)[5-(2-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (3e). 94 % as colorless oil (510 mg from 500 mg); Rf = 0.32 (hexanes: EtOAc, 90:10, v/v); IR (Neat): νmax 1735 (COMe & CO₂Me) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.17 (s, 3H), 3.78 (s, 3H), 6.02 (s, 1H), 6.51 (s, 1H), 6.90 (s, 1H), 7.19-7.25 (m, 7H), 7.28-7.37 (m, 1H), 7.40-7.43 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 21.2, 52.1, 68.1, 124.1, 126.7, 127.0, 127.3, 128.7, 130.0, 130.3, 132.1, 133.9, 138.4, 139.8, 140.4, 149.8, 165.6, 169.6 ppm; ESIMS (m/z) 558.9 [M+Na]⁺; Anal. Calcd. for C₂₂H₁₈Cl₁N₂O₄ (Exact Mass: 536.0000); C, 49.23; H, 3.38; N, 5.22. Found C, 49.40; H, 3.51; N, 5.07.

Methyl 2-(acetoxy(4-iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl)methyl)acrylate (3f). 94 % as colorless oil (510 mg from 500 mg); Rf = 0.32 (hexanes: EtOAc, 80:20, v/v); IR (Neat): νmax 1733 (COMe & CO₂Me) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.19 (s, 3H), 3.79 (s, 3H), 3.82 (s, 3H), 6.00 (s, 1H), 6.52 (s, 1H), 6.86-6.89 (m, 3H), 7.14-7.19 (m, 4H),
7.24-7.26 (m, 3H) ppm; 13C NMR (75 MHz, CDCl$_3$): δ 21.1, 52.2, 55.4, 68.2, 77.4, 114.1, 121.9, 125.0, 127.2, 127.7, 128.9, 131.8, 137.4, 140.0, 144.9, 150.6, 160.2, 165.7, 169.7 ppm; ESIMS (m/z) 533.1 [M+H]$^+$; Anal. Calcd. for C$_{23}$H$_{21}$IN$_2$O$_5$ (Exact Mass: 532.0495); C, 51.89; H, 3.98; N, 5.26. Found C, 52.12; H, 4.17; N, 5.06.

Methyl 2-{(acetyloxy)[4-iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (3g). 93 % as colorless oil (504 mg from 500 mg); R$_f$ 0.29 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν_{max} 1732 (COMe & CO$_2$Me) cm$^{-1}$; 1H NMR (200 MHz, CDCl$_3$): δ 2.20 (s, 3H), 3.80 (s, 3H), 6.03 (d, 1H, J = 0.6 Hz), 6.54 (s, 1H), 6.87 (s, 1H), 7.10-7.17 (m, 2H), 7.28-7.31 (m, 3H), 7.46 (d, 2H, J = 8.6 Hz), 8.21 (d, 2H, J = 8.6 Hz) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 21.1, 52.3, 67.9, 77.4, 123.8, 125.2, 127.3, 128.5, 129.3, 131.5, 136.1, 137.0, 139.3, 142.5, 148.0, 151.5, 165.6, 169.6 ppm; ESIMS (m/z) 488.0 [M-OAc]$^+$; Anal. Calcd. for C$_{22}$H$_{18}$IN$_3$O$_6$ (Exact Mass: 547.0240); C, 48.28; H, 3.31; N, 7.68. Found C, 48.47; H, 3.53; N, 7.45.

Methyl 2-{(acetyloxy)(4-iodo-1-methyl-5-phenyl-1H-pyrazol-3-yl)methyl}acrylate (3h). 93 % as colourless oil (514 mg from 500 mg); R$_f$ 0.33 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν_{max} 1721 (COMe & CO$_2$Me) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 2.17 (s, 3H), 3.78 (s, 6H), 5.96 (s, 1H), 6.51 (s, 1H), 6.79 (s, 1H), 7.36-7.39 (m, 2H), 7.43-7.50 (m, 3H) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 21.1, 38.7, 52.2, 62.3, 68.1, 126.6, 128.8, 129.6, 130.2, 137.5, 145.9, 149.2, 165.6, 169.6 ppm; ESIMS (m/z) 440.7 [M+H]$^+$; Anal. Calcd. for C$_{17}$H$_{17}$IN$_2$O$_4$ (Exact Mass: 440.0233); C, 46.38; H, 3.89; N, 6.36. Found C, 46.22; H, 4.08; N, 6.18.

Methyl 2-{(acetyloxy)[4-iodo-1-methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]methyl}acrylate (3i). 94 % as a colourless oil (518 mg from 500 mg); R$_f$ 0.32 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν_{max} 1730 (COMe & CO$_2$Me) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 2.17 (s, 3H), 2.43 (s, 3H), 3.78 (s, 6H), 5.96 (s, 1H), 6.51 (s, 2H), 6.79 (s, 1H), 7.25-7.32 (m, 4H) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 21.1, 21.5, 38.6, 52.2, 62.2,
68.0, 126.6, 129.5, 129.61, 129.64, 130.0, 137.5, 139.6, 144.4, 149.1, 165.6, 169.6 ppm; ESIMS (m/z) 476.9 [M+Na]+; Anal. Calcd. for C\textsubscript{18}H\textsubscript{19}IN\textsubscript{2}O\textsubscript{4} (Exact Mass: 454.0390); C, 47.59; H, 4.22; N, 6.17. Found C, 47.77; H, 4.36; N, 6.00.

Methyl 2-{(acetyloxy)[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl]methyl}acrylate (3j). 93 % as colourless oil (510 mg from 500 mg); R\textsubscript{f} = 0.33 (hexanes: EtOAc, 80:20, v/v); IR (Neat): v\textsubscript{max} 1729 (COMe & CO\textsubscript{2}Me) cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}): \delta 2.18 (s, 3H), 3.70 (s, 3H), 3.76 (s, 3H), 5.91 (s, 1H), 6.46 (s, 1H), 6.78 (s, 1H), 7.29-7.33 (m, 1H), 7.36-7.48 (m, 2H), 7.53-7.56 (m, 1H) ppm; 13C NMR (50 MHz, CDCl\textsubscript{3}): \delta 21.1, 38.4, 52.2, 63.5, 67.9, 126.7, 126.9, 127.2, 130.1, 131.5, 132.5, 132.7, 134.8, 137.5, 149.1, 165.5, 169.6 ppm; ESIMS (m/z) 497.1 [M+Na]+; Anal. Calcd. for C\textsubscript{17}H\textsubscript{16}ClIN\textsubscript{2}O\textsubscript{4} (Exact Mass: 473.9843); C, 43.01; H, 3.40; N, 5.90. Found C, 43.18; H, 3.59; N, 5.75.

![Methyl 2-{(acetyloxy)[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl]methyl}acrylate (3j)](image)

Methyl 2-[(acetyloxy)(4-iodo-1-methyl-1H-pyrazol-3-yl)methyl]acrylate (3k). ref-6

![Methyl 2-[(acetyloxy)(4-iodo-1-methyl-1H-pyrazol-3-yl)methyl]acrylate (3k)](image)

Methyl 2-[(acetyloxy)(4-iodo-1,3-diphenyl-1H-pyrazol-5-yl)methyl]acrylate (8a). ref-6

![Methyl 2-[(acetyloxy)(4-iodo-1,3-diphenyl-1H-pyrazol-5-yl)methyl]acrylate (8a)](image)

Methyl 2-{(acetyloxy)[4-iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazol-5-yl]methyl}acrylate (8b). 94 % as a colourless oil (512 mg from 500 mg); R\textsubscript{f} = 0.32 (hexanes: EtOAc, 80:20, v/v); IR (Neat): v\textsubscript{max} 1732 (COMe & CO\textsubscript{2}Me) cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}): \delta 2.10 (s, 3H), 2.40 (s, 3H), 3.69 (s, 3H), 5.70 (d, 1H, J = 1.5 Hz), 6.41 (d, 1H, J = 1.1 Hz), 6.82 (s, 1H), 7.25 (d, 2H, J = 8.2 Hz), 7.47 (s, 5H), 7.75 (d, 2H, J = 8.1 Hz) ppm; 13C NMR (50 MHz, CDCl\textsubscript{3}): \delta 20.7, 21.5, 52.3, 62.1, 66.4, 126.7, 128.7, 129.0, 129.07, 129.14, 129.3, 129.6, 134.9, 138.4, 139.5, 139.6, 153.4, 164.9, 169.1 ppm; ESIMS (m/z) 517.1 [M+H]+; Anal. Calcd. for C\textsubscript{23}H\textsubscript{21}IN\textsubscript{2}O\textsubscript{4} (Exact Mass: 516.0546); C, 53.50; H, 4.10; N, 5.43. Found C, 53.65; H, 3.94; N, 5.61.
Methyl 2-{(acetyloxy)[3-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-5-yl]methyl}acrylate (8c). 95 % as a colourless oil (516 mg from 500 mg); R_f = 0.33 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν_{max} 1730 (COMe & CO₂Me) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.11 (s, 3H), 3.69 (s, 3H), 5.70 (d, 1H, J = 1.4 Hz), 6.41 (d, 1H, J = 1.1 Hz), 6.81 (s, 1H), 7.41 (d, 2H, J = 8.6 Hz), 7.47 (s, 5H), 7.82 (d, 2H, J = 8.5 Hz) ppm; ¹³C NMR (50 MHz, CDCl₃): δ 20.7, 52.4, 61.9, 66.3, 126.7, 128.5, 129.1, 129.2, 129.5, 130.1, 131.0, 134.6, 134.8, 139.5, 139.9, 152.2, 164.8, 169.1 ppm; ESIMS (m/z) 537.2 [M+H]⁺; Anal. Calcd. for C₂₂H₁₈ClIN₂O₄ (Exact Mass: 536.0000); C, 49.23; H, 3.38; N, 5.22. Found C, 49.40; H, 3.51; N, 5.06.

Methyl 2-(acetoxy(1-benzyl-4-iodo-3-phenyl-1H-pyrazol-5-yl)methyl)acrylate (8l). 92 % as colorless oil (501 mg from 500 mg); R_f = 0.29 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν_{max} 1731 (COMe & CO₂Me) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.72 (s, 3H), 3.73 (s, 3H), 5.47-5.61 (m, 2H), 5.72 (s, 1H), 6.43 (s, 1H), 6.93 (s, 1H), 7.05 (d, 2H, J = 6.8 Hz), 7.23-7.30 (m, 3H), 7.37-7.46 (m, 3H), 7.85 (d, 2H, J = 6.8 Hz) ppm; ESIMS (m/z) 516.9 [M+H]⁺; Anal. Calcd. for C₂₃H₂₁IN₂O₄ (Exact Mass: 516.0546); C, 53.50; H, 4.10; N, 5.43. Found C, 53.70; H, 4.33; N, 5.24.

2-Cyano-1-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)allyl acetate (14a). ref-6

2-Cyano-1-[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]allyl acetate (14b). ref-6
1-[5-(4-Chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]-2-cyanoallyl acetate (14c). ref-6

1-[5-(2-Chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl]-2-cyanoallyl acetate (14j). 94 % as colorless oil (519 mg from 500 mg); R_f = 0.23 (hexanes: EtOAc, 80:20, v/v); IR (Neat): ν_max 1751 (COMe), 2231 (CN) cm^{-1}; ^1H NMR (300 MHz, CDCl_3): δ 2.23 (s, 3H), 3.76 (s, 3H), 6.11 (d, 1H, J = 1.4 Hz), 6.21 (d, 1H, J = 1.0 Hz), 6.48 (s, 1H), 7.31-7.32 (m, 1H), 7.44-7.48 (m, 2H), 7.54-7.55 (m, 1H) ppm; ^13C NMR (50 MHz, CDCl_3): δ 20.9, 38.5, 62.3, 68.9, 116.4, 120.7, 127.3, 128.4, 130.1, 131.6, 132.7, 133.2, 134.7, 144.3, 146.7, 169.4 ppm; ESIMS (m/z) 441.8 [M+H]^+;

Anal. Calcd. for C_{16}H_{13}ClIN_{3}O_{2} (Exact Mass: 440.9741); C, 43.51; H, 2.97; N, 9.51. Found C, 43.30; H, 2.82; N, 9.68.

General Procedure for the preparation of compounds 4a-k, 9a-c,l and 13a-c,j as Exemplified 4a. To a stirred solution of MeOH-NH_3 (100 mL), compound 3a (500 mg, 0.996 mmol) in MeOH (200 mL) was added slowly with stirring. After completion (ca 30 min) of the reaction MeOH was removed under vacuum. Column chromatography of the crude product over silica gel furnished the pure 4a as a white solid (ethyl acetate/hexanes, 9:1; yield: 375 mg, 82 %).

Methyl (E)-2-(aminomethyl)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (4a). 81 % as a white solid (370 mg from 500 mg); mp 215-216 °C; R_f = 0.24 (EtOAc: MeOH, 95: 5, v/v); IR (KBr): ν_max 1718 (CO_2Me), 3423 (NH_2) cm^{-1}; ^1H NMR (300 MHz, CDCl_3): δ 3.88 (s, 3H), 4.10 (s, 2H), 7.22-7.29 (m, 7H), 7.39-7.40 (m, 3H), 7.68 (s, 1H) ppm; ^13C NMR (50 MHz, CDCl_3 + DMSO-d_6): δ 37.3, 52.1, 70.0, 124.2, 127.8, 128.3, 128.6, 129.1, 129.8, 130.9, 131.4, 138.9, 144.7, 147.9, 167.1 ppm; ESIMS (m/z) 459.8 [M+H]^+; DART-HRMS Calcd. for C_{20}H_{19}IN_{3}O_{2} [MH]^+: 460.0522. Found: 460.0528.

Methyl (E)-2-(aminomethyl)-3-[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]prop-2-enoate (4b). 81 % as a white solid (371 mg from 500 mg); mp 87-88 °C; R_f = 0.23 (EtOAc: MeOH, 95: 5, v/v); IR (KBr):
ν_{max} 1715 (CO₂Me), 3450 (NH₂) cm⁻¹; 1H NMR (300 MHz, CDCl₃): δ 2.39 (s, 3H), 3.87 (s, 3H), 4.15 (s, 2H), 7.13-7.23 (m, 4H), 7.26-7.32 (m, 5H), 7.73 (s, 1H) ppm; 13C NMR (75 MHz, CDCl₃): δ 21.6, 37.7, 52.7, 66.9, 124.7, 126.3, 128.3, 129.0, 129.2, 129.6, 130.2, 131.4, 132.0, 139.6, 139.7, 145.4, 148.5, 167.6 ppm; ESIMS (m/z) 473.8 [M+H]⁺; DART-HRMS Calcd. for C₂₁H₂₁N₃O₂ [MH]⁺: 474.0678. Found: 474.0680.

Methyl (E)-2-(aminomethyl)-3-(5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4c). 80 % as a white solid (368 mg from 500 mg); mp 115-116 °C; R_f = 0.23 (EtOAc: MeOH, 95: 5, v/v); IR (KBr): ν_{max} 1714 (CO₂Me), 3425 (NH₂) cm⁻¹; 1H NMR (300 MHz, CDCl₃): δ 3.88 (s, 3H), 4.26 (s, 2H), 7.19-7.22 (m, 4H), 7.34-7.39 (m, 5H), 7.80 (s, 1H) ppm; 13C NMR (50 MHz, CDCl₃ + DMSO-d₆): δ 37.3, 51.9, 71.0, 124.3, 127.4, 127.9, 128.5, 128.7, 129.6, 131.3, 132.6, 134.6, 138.8, 143.3, 147.9, 166.9 ppm; ESIMS (m/z) 493.8 [M+H]⁺; DART-HRMS Calcd. for C₂₀H₁₈ClIN₃O₂ [MH]⁺: 494.0132. Found: 494.0136.

Methyl (E)-2-(aminomethyl)-3-[5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]prop-2-enoate (4d). 78 % as a white solid (358 mg from 500 mg); mp 202-203 °C; R_f = 0.25 (EtOAc: MeOH, 95: 5, v/v); IR (KBr): ν_{max} 1713 (CO₂Me), 3413 (NH₂) cm⁻¹; 1H NMR (300 MHz, CDCl₃): δ 3.88 (s, 3H), 4.12 (s, 2H), 7.09 (t, 2H, J = 8.6 Hz), 7.22-7.33 (m, 7H), 7.69 (s, 1H) ppm; 13C NMR (75 MHz, CDCl₃ + DMSO-d₆): δ 36.6, 51.5, 70.1, 114.8, 115.1, 123.8, 127.4, 127.9, 128.2, 128.3, 128.4, 130.1, 131.3, 131.4, 138.3, 143.2, 147.3, 160.3, 166.3 ppm; ESIMS (m/z) 477.8 [M+H]⁺; DART-HRMS Calcd. for C₂₀H₁₈FIN₃O₂ [MH]⁺: 478.0428. Found: 478.0423.

Methyl (E)-2-(aminomethyl)-3-(5-(2-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4e). 79 % as colorless oil (363 mg from 500 mg); R_f = 0.22 (EtOAc: MeOH, 95: 5, v/v); IR (Neat): ν_{max} 1708 (CO₂Me), 3408 (NH₂) cm⁻¹; 1H NMR (300 MHz, CDCl₃): δ 3.84 (s, 3H), 4.31-4.42 (s, 2H), 7.26-7.38 (m, 7H), 7.40-7.46 (m, 2H), 7.87 (s, 1H) ppm; 13C NMR (75 MHz, CDCl₃): δ 36.8, 53.0, 72.3, 124.0, 126.3, 127.4, 128.9, 129.4, 130.3, 131.7, 132.6, 134.2, 134.8, 139.2, 148.2, 166.6 ppm; ESIMS (m/z) 493.8 [M+H]⁺; DART-HRMS Calcd. for C₂₀H₁₈ClIN₃O₂ [MH]⁺: 494.0132. Found: 494.0129.
Methyl (E)-2-(aminomethyl)-3-(4-iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4f). 82 % as a white solid (377 mg from 500 mg); mp 204-206 °C; Rf = 0.22 (EtOAc: MeOH, 95: 5, v/v); IR (KBr): \(\nu_{\text{max}} \) 1710 (CO2Me), 3452 (NH2) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl3): \(\delta \) 3.83 (s, 3H), 3.87 (s, 3H), 4.19 (s, 2H), 6.90 (d, 2H, \(J = 8.5 \) Hz), 7.18 (d, 2H, \(J = 8.2 \) Hz), 7.26-7.32 (m, 5H), 7.72 (s, 1H) ppm; \(^13\)C NMR (75 MHz, CDCl3 + DMSO-d6): \(\delta \) 37.2, 52.1, 54.9, 70.0, 113.8, 120.7, 124.2, 127.8, 128.7, 131.2, 131.5, 139.0, 144.8, 147.8, 159.9, 166.9 ppm; ESIMS (m/z) 489.8 [M+H]+; ESI-HRMS Calcd. for C21H21IN3O3 [MH]+: 490.0628. Found: 474.0608.

Methyl (E)-2-(aminomethyl)-3-(4-iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4g) 79 % as a white solid (364 mg from 500 mg); mp 200-202 °C; Rf = 0.18 (EtOAc: MeOH, 95: 5, v/v); IR (KBr): \(\nu_{\text{max}} \) 1714 (CO2Me), 3426 (NH2) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl3): \(\delta \) 3.89 (s, 3H), 4.17 (s, 2H), 7.26-7.27 (m, 2H), 7.35-7.38 (m, 3H), 7.50 (d, 2H, \(J = 8.4 \) Hz), 7.70 (s, 1H), 8.25 (d, 2H, \(J = 8.3 \) Hz) ppm; \(^13\)C NMR (50 MHz, CDCl3 + DMSO-d6): \(\delta \) 37.6, 52.5, 70.6, 123.7, 124.7, 128.8, 129.3, 130.9, 131.2, 132.0, 135.5, 138.7, 142.7, 148.0, 148.9, 167.1 ppm; ESIMS (m/z) 504.8 [M+H]+; ESI-HRMS Calcd. for C20H18IN4O4 [MH]+: 505.0373. Found: 505.0365.

Methyl (E)-2-(aminomethyl)-3-(4-iodo-1-methyl-5-phenyl-1H-pyrazol-3-yl)prop-2-enoate (4h). 82 % as a white solid (370 mg from 500 mg); mp 198-199 °C; Rf = 0.19 (EtOAc: MeOH, 95: 5, v/v); IR (KBr): \(\nu_{\text{max}} \) 1711 (CO2Me), 3423 (NH2) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl3): \(\delta \) 3.87 (s, 3H), 3.90 (s, 3H), 4.09 (s, 2H), 7.37-7.40 (m, 2H), 7.51-7.52 (m, 3H), 7.64 (s, 1H) ppm; \(^13\)C NMR (50 MHz, CDCl3 + DMSO-d6): \(\delta \) 37.2, 39.3, 52.0, 67.2, 128.5, 129.3, 129.5, 130.6, 130.9, 145.6, 146.4, 167.3 ppm; ESIMS (m/z) 397.8 [M+H]+; DART-HRMS Calcd. for C15H17IN3O2 [MH]+: 398.0365. Found: 398.0361.

Methyl (E)-2-(aminomethyl)-3-[4-iodo-1-methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]prop-2-enoate (4i). 82 % as a white solid (371 mg from 500 mg); mp 129-130 °C; Rf = 0.18 (EtOAc: MeOH, 95: 5, v/v); IR (KBr): \(\nu_{\text{max}} \) 1718 (CO2Me), 3419 (NH2) cm\(^{-1}\); \(^1\)H NMR (200 MHz, CDCl3): \(\delta \) 2.45 (s, 3H), 3.87 (s, 3H), 3.90 (s, 3H), 4.12 (s, 2H), 7.24-7.36 (m,
4H), 7.68 (s, 1H) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 21.6, 37.2, 39.2, 52.6, 67.6, 126.0, 129.6, 129.64, 129.7, 129.8, 129.9, 132.4, 140.0, 146.4, 146.9, 167.6 ppm; ESIMS (m/z) 411.8 [M+H]$^+$; DART-HRMS Calcd. for C$_{16}$H$_{19}$IN$_3$O$_2$ [MH]$^+$: 412.0522. Found: 412.0532.

Methyl (E)-2-(aminomethyl)-3-[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl]prop-2-enoate (4j). 80 % as a white solid (364 mg from 500 mg); mp 120-121 °C; R_f = 0.18 (EtOAc: MeOH, 95: 5, v/v); IR (KBr): ν_{max} 1715 (CO$_2$Me), 3422 (NH$_2$) cm$^{-1}$; 1H NMR (200 MHz, CDCl$_3$): δ 3.84 (s, 3H), 3.87 (s, 3H), 4.15 (s, 2H), 7.28-7.33 (m, 1H), 7.40-7.59 (m, 3H), 7.67 (s, 1H) ppm; 13C NMR (75 MHz, CDCl$_3$): δ 37.4, 39.0, 52.6, 68.8, 127.5, 130.2, 130.3, 131.8, 131.9, 132.5, 134.8, 144.5, 147.1, 167.7 ppm; ESIMS (m/z) 431.8 [M+H]$^+$; DART-HRMS Calcd. for C$_{15}$H$_{16}$ClIN$_3$O$_2$ [MH]$^+$: 432.0001.

Methyl (E)-2-(aminomethyl)-3-(4-iodo-1-methyl-1H-pyrazol-3-yl)prop-2-enoate (4k). 83 % as a white solid (366 mg from 500 mg); mp 121-122 °C; R_f = 0.15 (EtOAc: MeOH, 95: 5, v/v); IR (KBr): ν_{max} 1710 (CO$_2$Me), 3400 (NH$_2$) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 3.85 (s, 3H), 3.98 (s, 5H), 7.46 (m, 1H), 7.51 (s, 1H) ppm; 13C NMR (75 MHz, CDCl$_3$): δ 37.5, 40.2, 52.5, 64.1, 128.9, 130.8, 136.1, 148.1, 167.9 ppm; ESIMS (m/z) 321.8 [M+H]$^+$; DART-HRMS Calcd. for C$_9$H$_{13}$IN$_3$O$_2$ [MH]$^+$: 322.0052. Found: 322.0057.

Methyl (E)-2-(aminomethyl)-3-[4-iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazol-5-yl]prop-2-enoate (9a). 72 % as a white solid (329 mg from 500 mg); mp 199-200 °C; R_f = 0.21 (EtOAc); IR (KBr): ν_{max} 1720 (CO$_2$Me), 3427 (NH$_2$) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 3.84 (s, 3H), 3.87 (s, 2H), 7.35-7.47 (m, 6H), 7.51 (s, 1H), 7.59 (d, 2H, J = 7.5 Hz), 7.83 (d, 2H, J = 6.4 Hz) ppm; 13C NMR (50 MHz, CDCl$_3$ + DMSO-d_6): δ 37.9, 52.8, 66.2, 123.6, 128.0, 128.4, 129.1, 132.3, 138.5, 138.78, 138.84, 153.4, 164.7 ppm; ESIMS (m/z) 459.8 [M+H]$^+$; DART-HRMS Calcd. for C$_{20}$H$_{19}$IN$_3$O$_2$ [MH]$^+$: 460.0522. Found: 460.0529.

Methyl (E)-2-(aminomethyl)-3-[4-iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazol-5-yl]prop-2-enoate (9b). 70 % as a white solid (321 mg from 500 mg); mp 110-111 °C; R_f = 0.22 (EtOAc); IR (KBr): ν_{max} 1714 (CO$_2$Me), 3403 (NH$_2$) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 2.41 (s, 3H), 3.38 (s, 2H), 3.85 (s, 3H), 7.27 (d, 2H, J = 7.9 Hz), 7.35 (s, 1H), 7.39 (d, 1H, J = 6.6 Hz), 7.44-
7.52 (m, 4H), 7.80 (d, 2H, \(J = 7.8 \) Hz) ppm; \(^{13}\)C NMR (50 MHz, DMSO-\(d_6\)): \(\delta \) 20.9, 38.7, 52.3, 66.2, 124.1, 126.0, 127.9, 128.2, 129.0, 129.3, 138.0, 139.3, 139.4, 140.6, 152.4, 166.4 ppm; ESIMS (m/z) 473.8 [M+H]^+; DART-HRMS Calcd. for C\(_{21}\)H\(_{21}\)IN\(_3\)O\(_2\) [MH]^+: 474.0678. Found: 474.0682.

Methyl \((E) \)-2-(aminomethyl)-3-[3-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-5-yl]prop-2-enoate (9c). 68 % as a white solid (313 mg from 500 mg); mp 85-86 °C; \(R_f = 0.20 \) (EtOAc); IR (KBr): \(\nu_{\text{max}} \) 1711 (CO \(2\text{Me} \)), 3413 (NH \(2 \)) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 3.36 (s, 2H), 3.85 (s, 3H), 7.32 (s, 1H), 7.42-7.50 (m, 7H), 7.87 (d, 2H, \(J = 8.4 \) Hz) ppm; \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta \) 40.7, 52.6, 64.6, 124.1, 124.2, 127.1, 128.6, 128.7, 128.9, 129.0, 129.6, 129.8, 130.8, 134.8, 139.5, 139.7, 140.6, 152.5, 166.6 ppm; ESIMS (m/z) 493.8 [M+1]^+; ESI-HRMS Calcd. for C\(_{20}\)H\(_{18}\)ClIN\(_3\)O\(_2\) [MH]^+: 494.0132. Found: 494.0146.

Methyl \((E) \)-2-(aminomethyl)-3-(1-benzyl-4-iodo-3-phenyl-1H-pyrazol-5-yl)prop-2-enoate (9l). 75 % as a white solid (344 mg from 500 mg); mp 200-202 °C; \(R_f = 0.25 \) (EtOAc: MeOH, 95: 5, v/v); IR (KBr): \(\nu_{\text{max}} \) 1723 (CO \(2\text{Me} \)), 3428 (NH \(2 \)) cm\(^{-1}\); \(^1\)H NMR (200 MHz, CDCl\(_3\)): \(\delta \) 3.42 (s, 2H), 3.86 (s, 3H), 5.36 (s, 2H), 7.16-7.19 (m, 2H), 7.30-7.33 (m, 3H), 7.39-7.49 (m, 4H), 7.84-7.88 (m, 2H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\) + DMSO-\(d_6\)): \(\delta \) 39.8, 52.5, 55.4, 62.2, 127.1, 127.4, 128.3, 128.9, 132.4, 135.9, 140.6, 152.1, 166.1 ppm; ESIMS (m/z) 474.2 [M+H]^+; DART-HRMS Calcd. for C\(_{21}\)H\(_{21}\)IN\(_3\)O\(_2\) [MH]^+: 474.0678. Found: 474.0666.

Methyl \((Z) \)-2-(aminomethyl)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enenitrile (15a). 77 % as a white solid (350 mg from 500 mg); mp 169-170 °C; \(R_f = 0.26 \) (EtOAc); IR (KBr): \(\nu_{\text{max}} \) 2212 (CN), 3407 (NH \(2 \)) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 3.70 (s, 2H), 7.07 (s, 1H), 7.18-7.28 (m, 6H), 7.40-7.42 (m, 4H) ppm; \(^{13}\)C NMR (75 MHz, CDCl\(_3\) + DMSO-\(d_6\)): \(\delta \) 45.4, 67.8, 114.9, 116.9, 123.4, 123.6, 127.0, 127.8, 128.0, 128.5, 129.3, 130.6, 138.6, 143.7, 146.3 ppm; ESIMS (m/z) 426.9 [M+H]^+; DART-HRMS Calcd. for C\(_{19}\)H\(_{16}\)IN\(_4\) [MH]^+: 427.0420. Found: 427.0402.

Methyl \((E) \)-2-(aminomethyl)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enenitrile (15a). 80 % as a white solid (200 mg from 250 mg); mp 152-154 °C; \(R_f = 0.30 \) (EtOAc); IR (KBr): \(\nu_{\text{max}} \) 2212 (CN), 3407 (NH \(2 \)) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 4.00 (s, 2H), 7.14 (s, 1H), 7.19-7.31 (m,
(Z)-2-(Aminomethyl)-3-[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]prop-2-enenitrile (15b). 76 % as a white solid (346 mg from 500 mg); mp 109-110 °C; R$_f$ = 0.25 (EtOAc); IR (KBr): ν_{max} 2204 (CN), 3387 (NH$_2$) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 2.38 (s, 3H), 4.00 (s, 2H), 7.11-7.22 (m, 7H), 7.29-7.31 (m, 3H) ppm; 13C NMR (75 MHz, CDCl$_3$): δ 21.6, 41.6, 69.6, 118.9, 120.1, 124.4, 124.6, 126.2, 128.3, 129.0, 129.1, 129.6, 130.1, 133.9, 139.6, 139.7, 145.3, 148.1 ppm; ESIMS (m/z) 440.8 [M+H]$^+$; DART-HRMS Calcd. for C$_{20}$H$_{18}$IN$_4$ [MH]$^+$: 441.0576. Found: 441.0579.

(Z)-2-(Aminomethyl)-3-[5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]prop-2-enenitrile (15c). 74 % as yellow oil (338 mg from 500 mg); R$_f$ = 0.27 (EtOAc); IR (KBr): ν_{max} 2212 (CN), 3423 (NH$_2$) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 3.98 (s, 2H), 7.14 (s, 1H), 7.18-7.25 (m, 4H), 7.28-7.38 (m, 5H) ppm; 13C NMR (75 MHz, CDCl$_3$): δ 41.5, 69.7, 119.3, 120.0, 124.6, 124.7, 127.6, 128.5, 129.2, 129.3, 129.4, 131.1, 131.6, 133.5, 135.8, 139.2, 143.9, 148.2 ppm; ESIMS (m/z) 460.8 [M+H]$^+$; DART-HRMS Calcd. for C$_{19}$H$_{15}$ClIN$_4$ [MH]$^+$: 461.0030. Found: 461.0020.

(Z)-2-(Aminomethyl)-3-[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl]prop-2-enenitrile (5j). 76 % as yellow oil (343 mg from 500 mg); R$_f$ = 0.23 (EtOAc); IR (Neat): ν_{max} 2213 (CN), 3395 (NH$_2$) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 3.65 (s, 2H), 3.82 (s, 3H), 6.96 (s, 1H), 7.27-7.31 (m, 1H), 7.40-7.50 (m, 2H), 7.56 (d, 1H, $J = 7.7$ Hz) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 39.0, 46.8, 67.0, 114.5, 118.0, 127.4, 128.6, 130.2, 131.7, 131.8, 132.5, 134.8, 144.0, 145.8 ppm; ESIMS (m/z) 398.7 [M+H]$^+$; DART-HRMS Calcd. for C$_{14}$H$_{13}$ClIN$_4$ [MH]$^+$: 398.9873. Found: 398.9870.

General Procedure for the preparation of compounds 12a-c. These compounds were prepared following the above mentioned general procedure for the preparation of the primary allylamines. However the reaction time for these compounds varied between 6-8 h.
2-(Aminomethyl)-3-hydroxy-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)propanenitrile (diastereomeric mixture) (12a). 92 % as a yellow solid (239 mg from 250 mg); mp 129-130 °C; $R_f= 0.30$ (EtOAc); IR (KBr): ν_{max} 2244 (CN), 3438 (NH$_2$ & OH) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 3.27-3.48 (m, 3H), 5.13-5.26 (m, 1H), 7.18-7.22 (m, 7H), 7.36-7.38 (m, 3H) ppm; 13C NMR (75 MHz, CDCl$_3$): δ 39.2, 41.4, 42.0, 42.3, 62.7, 64.0, 67.9, 68.4, 119.1, 119.4, 124.9, 125.0, 128.0, 128.7, 129.0, 129.3, 130.4, 139.1, 145.1, 152.2, 152.8 ppm; ESIMS (m/z) 445.0 [M+H]$^+$; DART-HRMS Calcd. for C$_{19}$H$_{18}$IN$_4$O [MH]$^+$: 445.0525. Found: 445.0557.

2-(Aminomethyl)-3-hydroxy-3-[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]propanenitrile (diastereomeric mixture) (12b). 91 % as a yellow solid (236 mg from 250 mg); mp 175-176 °C; $R_f= 0.31$ (EtOAc); IR (KBr): ν_{max} 2239 (CN), 3430 (NH$_2$ & OH) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 2.37 (s, 3H), 3.26-3.42 (m, 3H), 5.11-5.24 (m, 1H), 7.14-7.26 (m, 9H) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 21.6, 39.0, 39.1, 41.3, 42.2, 63.9, 64.5, 67.9, 68.4, 119.1, 119.4, 125.0, 126.4, 126.5, 127.9, 129.0, 129.4, 130.3, 139.4, 139.5, 139.7, 139.8, 145.2, 145.4, 147.6, 152.0, 152.6 ppm; ESIMS (m/z) 459.0 [M+H]$^+$; DART-HRMS Calcd. for C$_{20}$H$_{20}$IN$_4$O [MH]$^+$: 459.0682. Found: 459.0725.

2-(Aminomethyl)-3-(5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl)-3-hydroxypropanenitrile (diastereomeric mixture) (12c). 90 % as a yellow solid (233 mg from 250 mg); mp 110-111 °C; $R_f= 0.30$ (EtOAc); IR (KBr): ν_{max} 2247 (CN), 3435 (NH$_2$ & OH) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 3.29-3.47 (m, 3H), 5.11-5.24 (m, 1H), 7.15-7.26 (m, 9H) ppm; 13C NMR (50 MHz, CDCl$_3$): δ 38.7, 41.6, 44.1, 44.2, 60.6, 61.7, 64.2, 67.4, 67.9, 68.4, 119.3, 122.3, 124.8, 124.9, 127.7, 127.8, 128.1, 128.9, 129.0, 129.1, 131.6, 135.4, 135.5, 139.3, 139.4, 143.8, 143.9, 151.5, 154.3 ppm; ESIMS (m/z) 478.9 [M+H]$^+$; DART-HRMS Calcd. for C$_{19}$H$_{17}$ClIN$_4$O [MH]$^+$: 479.0136. Found: 479.0151.

Methyl (E)-2-[(propylamino)methyl]-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (16). 91 % as a white solid (227 mg from 250 mg); mp 84-85 °C; $R_f= 0.14$ (hexanes: EtOAc, 50:50, v/v); IR (KBr): ν_{max} 1702 (CO$_2$Me), 3437 (NH) cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 0.82 (t, 3H, $J = 7.4$ Hz), 1.49-1.59 (m, 2H), 2.71 (t, 2H, $J = 7.4$ Hz), 3.89 (s, 3H), 4.14 (s, 2H), 7.22-7.32 (m, 7H), 7.39-
7.40 (m, 3H), 7.80 (s, 1H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)): \(\delta\) 11.4, 22.9, 44.1, 49.0, 52.9, 70.6, 124.9, 127.4, 128.1, 128.8, 129.2, 129.4, 131.2, 131.6, 133.4, 135.9, 139.2, 144.4, 148.6, 167.3 ppm; ESIMS (\(m/z\)) 502.1 [M+H]⁺; DART-HRMS Calcd. for C\(_{23}\)H\(_{25}\)IN\(_3\)O\(_2\) [MH]+: 502.0991. Found: 502.0995.

Methyl (E)-3-(4-iodo-1,5-diphenyl-1\(H\)-pyrazol-3-yl)-2-((isopropylamino)methyl) prop-2-enoate (17). 85 % as a white solid (424 mg from 500 mg); mp 91-92 °C; \(R_f\) = 0.24 (hexanes: EtOAc, 50:50, v/v); IR (KBr): \(\nu\)max 1704 (CO \(2\)Me), 3412 (NH) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 1.05 (s, 3H), 1.07 (s, 3H), 2.81-2.89 (m, 1H), 3.87 (s, 3H), 4.03 (s, 2H), 7.21-7.23 (m, 2H), 7.26-7.28 (m, 5H), 7.38-7.40 (m, 3H), 7.69 (s, 1H) ppm; \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 23.0, 43.7, 48.1, 52.4, 70.5, 124.6, 128.0, 128.8, 129.0, 129.4, 129.7, 130.4, 130.7, 133.8, 139.8, 144.8, 148.9, 168.5 ppm; ESIMS (\(m/z\)) 501.9 [M+H]⁺; DART-HRMS Calcd. for C\(_{23}\)H\(_{25}\)IN\(_3\)O\(_2\) [MH]+: 502.0991. Found: 502.0996.

Methyl (E)-2-((cyclopropylamino)methyl)-3-(4-iodo-1,5-diphenyl-1\(H\)-pyrazol-3-yl) prop-2-enoate (18). 87 % as a white solid (432 mg from 500 mg); mp 93-94 °C; \(R_f\) = 0.25 (hexanes: EtOAc, 50:50, v/v); IR (KBr): \(\nu\)max 1718 (CO\(_2\)Me), 3400 (NH) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 0.41-0.47 (m, 2H), 0.54-0.56 (m, 2H), 2.20-2.27 (m, 1H), 3.88 (s, 3H), 4.19 (s, 2H), 7.23-7.29 (m, 7H), 7.39-7.40 (m, 3H), 7.76 (s, 1H) ppm; \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 23.0, 43.7, 48.1, 52.4, 70.5, 124.6, 128.1, 128.7, 129.0, 129.4, 130.3, 131.5, 132.0, 139.6, 144.9, 148.7, 168.2 ppm; ESIMS (\(m/z\)) 499.9 [M+H]⁺; DART-HRMS Calcd. for C\(_{23}\)H\(_{23}\)IN\(_3\)O\(_2\) [MH]+: 500.0835. Found: 500.0832.

Methyl (E)-2-[(tert-butylamino)methyl]-3-(4-iodo-1,5-diphenyl-1\(H\)-pyrazol-3-yl)prop-2-enoate (19). 86 % as a white solid (441 mg from 500 mg); mp 111-112 °C; \(R_f\) = 0.28 (hexanes: EtOAc, 50:50, v/v); IR (KBr): \(\nu\)max 1702 (CO \(2\)Me), 3446 (NH) cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 1.21 (s, 9H), 3.89 (s, 3H), 4.06 (s, 2H), 7.21-7.31 (m, 6H), 7.38-7.40 (m, 4H), 7.74 (s, 1H) ppm; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)): \(\delta\) 29.7, 45.0, 52.5, 70.5, 124.6, 128.1, 128.7, 129.0, 129.4, 129.6, 130.4, 133.6, 139.8, 144.9, 148.9, 168.4 ppm; ESIMS (\(m/z\)) 516.0 [M+H]⁺; DART-HRMS Calcd. for C\(_{24}\)H\(_{27}\)IN\(_3\)O\(_2\) [MH]+: 516.1148. Found: 516.1139.
Methyl (E)-2-(anilinomethyl)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (20). 84 % as a yellow solid (224 mg from 250 mg); mp 204-205 °C; R_f = 0.41 (hexanes: EtOAc, 90:10, v/v); IR (KBr): ν_{max} 1702 (CO₂Me), 3371 (NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.80 (s, 1H), 3.82 (s, 3H), 4.67 (s, 2H), 6.90-7.00 (m, 3H), 7.17-7.23 (m, 3H), 7.26-7.31 (m, 6H), 7.40-7.42 (m, 3H), 7.81 (s, 1H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ 41.0, 52.5, 70.7, 114.1, 117.6, 124.5, 128.1, 128.8, 129.1, 129.2, 129.5, 130.4, 130.9, 132.9, 139.6, 144.9, 148.5, 148.7, 168.3 ppm; ESIMS (m/z) 535.9 [M+H]⁺; DART-HRMS Calcd. for C₂₆H₂₃IN₃O₂ [MH]⁺: 536.0835. Found: 536.0833.
Fig-1: 1H-spectrum of [5-(4-fluorophenyl)-1-phenyl-1H-pyrazol-3-yl]methanol.

Fig-2: 1H-spectrum of [5-(2-chlorophenyl)-1-phenyl-1H-pyrazol-3-yl]methanol.
Fig. 3: 1H-spectrum of [5-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl]methanol.

Fig. 4: 1H-spectrum of [5-(4-nitrophenyl)-1-phenyl-1H-pyrazol-3-yl]methanol.
Fig-5: 1H-spectrum of (1-methyl-5-phenyl-1H-pyrazol-3-yl)methanol.

Fig-6: 1H-spectrum of [1-methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]methanol.
Fig-7: 1H-spectrum of [5-(2-chlorophenyl)-1-methyl-1H-pyrazol-3-yl]methanol.

Fig-8: 1H-spectrum of (1,3-diphenyl-1H-pyrazol-5-yl)methanol.
Fig-9: 1H-spectrum of [3-(4-methylphenyl)-1-phenyl-1H-pyrazol-5-yl]methanol.

Fig-10: 1H-spectrum of [3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-5-yl]methanol.
Fig-11: 1H-spectrum of (1-benzyl-3-phenyl-1H-pyrazol-5-yl)methanol.

Fig-12: 1H-spectrum of 5-(4-fluorophenyl)-1-phenyl-1H-pyrazole-3-caraldehyde.
Fig-13: 1H-spectrum of 5-(2-chlorophenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde.

Fig-14: 1H-spectrum of 5-(4-methoxyphenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde.
Fig-15: 1H-spectrum of 5-(4-nitrophenyl)-1-phenyl-H-pyrazole-3-carbaldehyde.

Fig-16: 1H-spectrum of 1-methyl-5-phenyl-H-pyrazole-3-carbaldehyde.
Fig-17: 1H-spectrum of 1-methyl-5-(4-methylphenyl)-1H-pyrazole-3-carbaldehyde.

Fig-18: 1H-spectrum of 5-(2-chlorophenyl)-1-methyl-1H-pyrazole-3-carbaldehyde.
Fig-19: 1H-spectrum of 1-benzyl-3-phenyl-1H-pyrazole-5-carbaldehyde.

Fig-20: 1H-spectrum of 5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazole-3-carbaldehyde (1d).
Fig-21: 13C spectrum of 5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazole-3-carbaldehyde (1d).

Fig-22: 1H spectrum of 5-(2-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazole-3-carbaldehyde (1e).
Fig-23: 1H-spectrum of 4-Iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde (1f).
Fig-24: 1H-spectrum of 4-Iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazole-3-carbaldehyde (1g).

Fig-25: 1H-spectrum of 4-Iodo-1-methyl-5-phenyl-1H-pyrazole-3-carbaldehyde (1h).

Fig-26: 1H-spectrum of 5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazole-3-carbaldehyde (1j).
Fig-27: 13C spectrum of 5-(2-Chlorophenyl)-4-iodo-1-methyl-1H-pyrazole-3-carbaldehyde (1j).

Fig-28: 1H-spectrum of 4-iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazole-5-carbaldehyde (6b).
Fig-29: 1H-spectrum of 3-(4-chlorophenyl)-4-iodo-1-phenyl-$1H$-pyrazole-5-carbaldehyde (6c).

Fig-30: 1H-spectrum of methyl 1-benzyl-4-iodo-3-phenyl-$1H$-pyrazole-5-carbaldehyde (6l).
Fig-31: 1H-spectrum of methyl 2-[[5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylate (2d).

Fig-32: 13C spectrum of methyl 2-[[5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylate (2d).
Fig-33: 1H-spectrum of methyl 2-[[5-(2-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylate (2e).

Fig-34: 13C spectrum of methyl 2-[[5-(2-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylate (2e).
Fig-35: 1H-spectrum of methyl 2-\{hydroxy[4-iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl]methyl\}acrylate (2f).

Fig-36: 13C spectrum of methyl 2-\{hydroxy[4-iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl]methyl\}acrylate (2f).
Fig-37: 1H-spectrum of methyl 2-{hydroxy[4-iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (2g).

Fig-38: 13C spectrum of methyl 2-{hydroxy[4-iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (2g).
Fig-39: 1H-spectrum of methyl 2-[[hydroxy(4-iodo-1-methyl-5-phenyl-1H-pyrazol-3-yl)methyl]methyl]acrylate (2h).

Fig-40: 13C spectrum of methyl 2-[[hydroxy(4-iodo-1-methyl-5-phenyl-1H-pyrazol-3-yl)methyl]methyl]acrylate (2h).
Fig-41: 1H-spectrum of methyl 2-\{hydroxy[4-iodo-1-methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]methyl\}acrylate (2i).

Fig-42: 13C spectrum of methyl 2-\{hydroxy[4-iodo-1-methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]methyl\}acrylate (2i).
Fig-43: 1H-spectrum of methyl 2-[[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylate (2j).

Fig-44: 13C spectrum of methyl 2-[[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylate (2j).
Fig-45: 1H-spectrum of methyl 2-\{hydroxy[4-iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazol-5-yl]methyl\}acrylate (7b).

Fig-46: 13C spectrum of methyl 2-\{hydroxy[4-iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazol-5-yl]methyl\}acrylate (7b).
Fig-47: 1H-spectrum of methyl 2-[[3-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-5-yl](hydroxy)methyl]acrylate (7c).

Fig-48: 13C spectrum of methyl 2-[[3-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-5-yl](hydroxy)methyl]acrylate (7c).
Fig-49: 1H-spectrum of methyl 2-[(1-benzyl-4-iodo-3-phenyl-1H-pyrazol-5-yl)(hydroxy)methyl]acrylate (7l).

Fig-50: 1H-spectrum of 2-[[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylonitrile (11j).
Fig-51: 13C spectrum of 2-[[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl](hydroxy)methyl]acrylonitrile (11j).

Fig-52: 1H-spectrum of methyl 2-{(acetyloxy)[5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (3d).
Fig-53: 13C spectrum of methyl 2-\{(acetyloxy)[5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]methyl\}acrylate (3d).

Fig-54: 1H-spectrum of methyl 2-\{(acetyloxy)[5-(2-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]methyl\}acrylate (3e).
Fig-55: 13C spectrum of methyl 2-\{(acetoxy)[5-(2-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]methyl\}acrylate (3e).

Fig-56: 1H-spectrum of methyl 2-(acetoxy(4-iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl)methyl)acrylate (3f).
Fig-57: 13C spectrum of methyl 2-(acetoxy(4-iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl)methyl)acrylate (3f).

Fig-58: 1H-spectrum of methyl 2-{(acetyloxy)[4-iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (3g).
Fig-59: 13C spectrum of methyl 2-{(acetyloxy)[4-iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazol-3-yl]methyl}acrylate (3g).

Fig-60: 1H-spectrum of methyl 2-{(acetyloxy)(4-iodo-1-methyl-5-phenyl-1H-pyrazol-3-yl)methyl}acrylate (3h).
Fig-61: 13C spectrum of methyl 2-[(acetyloxy)(4-iodo-1-methyl-5-phenyl-1H-pyrazol-3-yl)methyl]acrylate (3h).

Fig-62: 1H-spectrum of methyl 2-{(acetyloxy)[4-iodo-1-methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]methyl}acrylate (3i).
Fig-63: 13C spectrum of methyl 2-\{(acetyloxy)[4-iodo-1-methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]methyl\}acrylate (3i).

Fig-64: 1H-spectrum of methyl 2-\{(acetyloxy)[4-iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazol-5-yl]methyl\}acrylate (8b).
Fig-65: 13C spectrum of methyl 2-\{(acetyloxy)[4-iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazol-5-yl]methyl\}acrylate (8b).

Fig-66: 1H-spectrum of methyl 2-\{(acetyloxy)[3-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-5-yl]methyl\}acrylate (8c).
Fig-67: 13C spectrum of methyl 2-{(acetyloxy)[3-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-5-yl]methyl}acrylate (8c).

Fig-68: 1H-spectrum of methyl 2-(acetoxy(1-benzyl-4-iodo-3-phenyl-1H-pyrazol-5-yl)methyl)acrylate (8l).
Fig-69: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (4a).

Fig-70: 13C spectrum of methyl (E)-2-(aminomethyl)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (4a).
Fig-71: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]prop-2-enoate (4b).

Fig-72: 13C spectrum of methyl (E)-2-(aminomethyl)-3-[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]prop-2-enoate (4b).
Fig-73: 1H-spectrum of methyl (E)- 2-(aminomethyl)-3-(5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4c).

Fig-74: 13C spectrum of methyl (E)- 2-(aminomethyl)-3-(5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4c).
Fig-75: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-[5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]prop-2-enoate (4d).

Fig-76: 13C spectrum of methyl (E)-2-(aminomethyl)-3-[5-(4-fluorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]prop-2-enoate (4d).
Fig-77: 1H-spectrum of methyl (E)- 2-(aminomethyl)-3-(5-(2-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4e).

Fig-78: 13C spectrum of methyl (E)- 2-(aminomethyl)-3-(5-(2-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4e).
Fig-79: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-(4-iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4f).

Fig-80: 13C spectrum of methyl methyl (E)-2-(aminomethyl)-3-(4-iodo-5-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4f).
Fig-81: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-(4-iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4g).

Fig-82: 13C spectrum of methyl methyl (E)-2-(aminomethyl)-3-(4-iodo-5-(4-nitrophenyl)-1-phenyl-1H-pyrazol-3-yl) prop-2-enoate (4g).
Fig-83: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-(4-iodo-1-methyl-5-phenyl-1H-pyrazol-3-yl)prop-2-enoate (4h).

Fig-84: 13C spectrum of methyl (E)-2-(aminomethyl)-3-(4-iodo-1-methyl-5-phenyl-1H-pyrazol-3-yl)prop-2-enoate (4h).
Fig-85: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-[4-iodo-1-methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]prop-2-enoate (4i).

Fig-86: 13C spectrum of methyl (E)-2-(aminomethyl)-3-[4-iodo-1-methyl-5-(4-methylphenyl)-1H-pyrazol-3-yl]prop-2-enoate (4i).
Fig-87: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl]prop-2-enoate (4j).

Fig-88: 13C spectrum of methyl (E)-2-(aminomethyl)-3-[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl]prop-2-enoate (4j).
Fig-89: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-(4-iodo-1-methyl-1H-pyrazol-3-yl)prop-2-enate (4k).

Fig-90: 13C spectrum of methyl (E)-2-(aminomethyl)-3-(4-iodo-1-methyl-1H-pyrazol-3-yl)prop-2-enate (4k).
Fig-91: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-(4-iodo-1,3-diphenyl-1H-pyrazol-5-yl)prop-2-enoate (9a).

Fig-92: 13C spectrum of methyl (E)-2-(aminomethyl)-3-(4-iodo-1,3-diphenyl-1H-pyrazol-5-yl)prop-2-enoate (9a).
Fig-93: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-[4-iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazol-5-yl]prop-2-enoate (9b).

Fig-94: 13C spectrum of methyl (E)-2-(aminomethyl)-3-[4-iodo-3-(4-methylphenyl)-1-phenyl-1H-pyrazol-5-yl]prop-2-enoate (9b).
Fig-95: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-[3-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-5-yl]prop-2-enoate (9c).

Fig-96: 13C spectrum of methyl (E)-2-(aminomethyl)-3-[3-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-5-yl]prop-2-enoate (9c).
Fig-97: 1H-spectrum of methyl (E)-2-(aminomethyl)-3-(1-benzyl-4-iodo-3-phenyl-1H-pyrazol-5-yl)prop-2-enoate (9l).

Fig-98 13C spectrum of methyl (E)-2-(aminomethyl)-3-(1-benzyl-4-iodo-3-phenyl-1H-pyrazol-5-yl)prop-2-enoate (9l).
Fig-99: 1H-spectrum of (Z)-2-(aminomethyl)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enenitrile (15a).

Fig-100: 13C spectrum of (Z)-2-(aminomethyl)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enenitrile (15a).
Fig-101: 13C spectrum of (E)-2-(aminomethyl)-3-(4-ido-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enenitrile (15a)
Fig-102: 1H-spectrum of (Z)-2-(aminomethyl)-3-[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]prop-2-enenitrile (15b).

Fig-103: 13C spectrum of (Z)-2-(aminomethyl)-3-[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]prop-2-enenitrile (15b).
Fig-104: 1H-spectrum of (Z)-2-(aminomethyl)-3-[5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]prop-2-enenitrile ($15c$).

Fig-105: 13C spectrum of (Z)-2-(aminomethyl)-3-[5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl]prop-2-enenitrile ($15c$).

Fig-106: 1H-spectrum of (Z)-2-(aminomethyl)-3-[5-(2-chlorophenyl)-4-iodo-1-methyl-1H-pyrazol-3-yl]prop-2-enenitrile ($15j$).
Fig-107. \(^{13}\text{C}\) spectrum of (Z)-2-(aminomethyl)-3-[5-(2-chlorophenyl)-4-iodo-1-methyl-1\(H\)-pyrazol-3-yl]prop-2-enenitrile (15j).

Fig-108. \(^1\text{H}\)-spectrum of 2-(aminomethyl)-3-hydroxy-3-[(4-iodo-1,5-diphenyl-1\(H\)-pyrazol-3-yl)propanenitrile (12a).
Fig-109: 13C spectrum of 2-(aminomethyl)-3-hydroxy-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)propanenitrile (12a).

Fig-110: 1H-spectrum of 2-(aminomethyl)-3-hydroxy-3-[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]propanenitrile (12b).
Fig-111. 13C spectrum of 2-(aminomethyl)-3-hydroxy-3-[4-iodo-5-(4-methylphenyl)-1-phenyl-1H-pyrazol-3-yl]propanenitrile (12b).

Fig-112. 1H-spectrum of 2-(aminomethyl)-3-(5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl)-3-hydroxypropanenitrile (12c).
Fig-113: 13C spectrum of 2-(aminomethyl)-3-(5-(4-chlorophenyl)-4-iodo-1-phenyl-1H-pyrazol-3-yl)-3-hydroxypropanenitrile (12c).

Fig-114: 1H-spectrum of methyl 2,3-diphenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5a).
Fig-115: 13C spectrum of methyl 2,3-diphenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5a).

Fig-116: 1H-spectrum of methyl 3-(4-methylphenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5b).
Fig-117. 13C spectrum of methyl 3-(4-methylphenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5b).

Fig-118. 1H-spectrum of methyl 3-(4-chlorophenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5c).
Fig-119: 13C spectrum of methyl 3-(4-chlorophenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5c).

Fig-120: 1H-spectrum of methyl 3-(4-fluorophenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5d).
Fig-121: 13C spectrum of methyl 3-(4-fluorophenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5d).

Fig-122: 1H-spectrum of methyl 3-(2-chlorophenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5e).
Fig-123: 13C spectrum of methyl 3-(2-chlorophenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5e).

Fig-124: 1H-spectrum of methyl 3-(4-methoxyphenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5f).
Fig-125: 13C spectrum of methyl 3-(4-methoxyphenyl)-2-phenyl-$2H$-pyrazolo[4,3-b]pyridine-6-carboxylate (5f).

Fig-126: 1H-spectrum of methyl 3-(4-nitrophenyl)-2-phenyl-$2H$-pyrazolo[4,3-b]pyridine-6-carboxylate (5g).
Fig-127: 13C spectrum of methyl 3-(4-nitrophenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5g).

Fig-128: 1H-spectrum of methyl 2-methyl-3-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5h).
Fig-129: 13C spectrum of methyl 2-methyl-3-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5h).

Fig-130: 1H-spectrum of methyl methyl 2-methyl-3-(4-methylphenyl)-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5i).
Fig-131: 13C spectrum of methyl 2-methyl-3-(4-methylphenyl)-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5i).

Fig-132: 1H-spectrum of methyl 3-(2-chlorophenyl)-2-methyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5j).
Fig-133: 13C spectrum of methyl 3-(2-chlorophenyl)-2-methyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5j).

Fig-134: 1H-spectrum of methyl 2-methyl-2H-pyrazolo[4,3-b]pyridine-6-carboxylate (5k).
Fig-135: ^{13}C spectrum of methyl 2-methyl-$2H$-pyrazolo[4,3-b]pyridine-6-carboxylate (5k).

Fig-136: ^1H-spectrum of methyl 1,3-diphenyl-$1H$-pyrazolo[4,3-b]pyridine-6-carboxylate (10a).
Fig-137: 13C spectrum of methyl 1,3-diphenyl-1H-pyrazolo[4,3-b]pyridine-6-carboxylate (10a).

Fig-138: 1H-spectrum of methyl 3-(4-methylphenyl)-1-phenyl-1H-pyrazolo[4,3-b]pyridine-6-carboxylate (10b).
Fig-139: 13C spectrum of methyl 3-(4-methylphenyl)-1-phenyl-1H-pyrazolo[4,3-b]pyridine-6-carboxylate (10b).

Fig-140: 1H-spectrum of methyl 3-(4-chlorophenyl)-1-phenyl-1H-pyrazolo[4,3-b]pyridine-6-carboxylate (10c).
Fig-141: 13C spectrum of methyl 3-(4-chlorophenyl)-1-phenyl-1H-pyrazolo[4,3-b]pyridine-6-carboxylate (10c).

Fig-142: 1H-spectrum of methyl 1-benzyl-3-phenyl-1H-pyrazolo[4,3-b]pyridine-6-carboxylate (10l).
Fig-143: 13C spectrum of methyl 1-benzyl-3-phenyl-1H-pyrazolo[4,3-b]pyridine-6-carboxylate (10l).

Fig-144: 1H-spectrum of 2,3-diphenyl-2H-pyrazolo[4,3-b]pyridine-6-carbonitrile (13a).
Fig-145: 13C spectrum of 2,3-diphenyl-2H-pyrazolo[4,3-b]pyridine-6-carbonitrile (13a).

Fig-146: 1H-spectrum of 3-(4-methylphenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carbonitrile (13b).
Fig-147: ^{13}C-spectrum of 3-(4-methylphenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carbonitrile (13b).

Fig-148: ^1H-spectrum of 3-(4-chlorophenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carbonitrile (13c).
Fig-149: 13C spectrum of 3-(4-chlorophenyl)-2-phenyl-2H-pyrazolo[4,3-b]pyridine-6-carbonitrile (13c).

Fig-150: 1H-spectrum of 3-(2-chlorophenyl)-2-methyl-2H-pyrazolo[4,3-b]pyridine-6-carbonitrile (13j).
Fig-151: 13C-spectrum of 3-(2-chlorophenyl)-2-methyl-2H-pyrazolo[4,3-b]pyridine-6-carbonitrile (13j).

Fig-152: 1H-spectrum of methyl (E)-2-[(propylamino)methyl]-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (16).
Fig-153: 13C spectrum of methyl (E)-2-[(propylamino)methyl]-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (16).

Fig-154: 1H-spectrum of methyl (E)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)-2-((isopropylamino)methyl) prop-2-enoate (17).
Fig-155: 13C spectrum of methyl (E)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)-2-((isopropylamino)methyl) prop-2-enoate (17).

Fig-156: 1H spectrum of methyl (E)-2-((cyclopropylamino)methyl)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl) prop-2-enoate (18).
Fig-157: 13C spectrum of methyl (E)-2-((cyclopropylamino)methyl)-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl) prop-2-enoate (18).

Fig-158: 1H-spectrum of methyl (E)-2-[(tert-butylamino)methyl]-3-(4-iodo-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (19).
Fig-159: 13C spectrum of methyl (E)-2-[(tert-butylamino)methyl]-3-(4-ido-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (19).

Fig-160: 1H-spectrum of methyl (E)-2-(anilinomethyl)-3-(4-ido-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (20).
Fig-161: 13C spectrum of methyl (E)-2-(anilinomethyl)-3-(4-ido-1,5-diphenyl-1H-pyrazol-3-yl)prop-2-enoate (20).