Supporting Information for

Hydrogen Storage and Selective Carbon Dioxide Capture in a New Chromium(III)-Based Infinite Coordination Polymer

Jian Zhang,* Lixian Sun,*a Fen Xu,*a Fen Li,a Huai-Ying Zhou,c Feng-Lei Huang,d Zelimir Gabelicae and Christoph Schickf

[a] Materials and Thermochemistry Laboratory, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, 116023, China;
[b] Institute of Chemistry for Functionalized Materials, College of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian, 116029, China.
[c] Department of Material Science & Engineering, Guilin University of Electrical Technology, Guilin 541004, China
[d] State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
[e] Université de Haute Alsace, ENSCMu, Lab. LPI-GSEC, 3, Rue A. Werner, F-68094, Mulhouse Cedex, France.
[f] Institute of Physics, Universität Rostock, Rostock D-18059, Germany.

*E-mail:lxsun@dicp.ac.cn; xufen@lnnu.edu.cn;
Figure S1. SEM image of infinite coordination polymer particles obtained using a volume ratio of 1,4-dioxane to DMF, 25:75.

Figure S2. Powder XRD patterns of samples 1 and 2.
Figure S3. Infrared spectra of samples 1 and 2.

Figure S4. Solid-state UV-Vis spectra of samples 1 and 2.
Figure S5. TG profiles of samples 1 and 2 (heating rate: 10 °C min⁻¹ in air flow).

Figure S6. High-pressure hydrogen adsorption isotherms for samples 1 (squares), and 2 (circles) at 77 K over a pressure range of 0-33 atm. In the isotherms, solid and open markers represent adsorption and desorption points, respectively.
Figure S7. Low-pressure hydrogen adsorption isotherms for samples 1, 1', 2 and 2' at 80 K (squares), 85 K (circles) and 90 K (triangles).

Figure S8. Low-pressure CO₂ adsorption isotherms for samples 1, 1', 2 and 2' at 295 K.
Figure S9. Low-pressure CH$_4$ adsorption isotherms for samples 1, 1', 2 and 2' at 296 K.