Supporting Information

Direct Measurements of the Saturated Vapor Pressure of Water Confined in Extended Nanospaces using Capillary Evaporation Phenomena

Takehiko Tsukahara¹, Taku Maeda², Kazuma Mawatari²,

Akihide Hibara², and Takehiko Kitamori²#

¹ Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-32, O-Okayama, Meguro-ku, Tokyo 152-8550 Japan,

² Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

CORRESPONDING AUTHOR; Prof. Takehiko Kitamori
Tel: +81-3-5841-7231, Fax: +81-3-5841-6039
E-mail: kitamori@icl.t.u-tokyo.ac.jp
Table S1 The fabricated sizes and its capillary radius of the extended nanospaces.

<table>
<thead>
<tr>
<th>Width / nm</th>
<th>Depth / nm</th>
<th>Capillary radius r / nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>90</td>
<td>103</td>
</tr>
<tr>
<td>420</td>
<td>190</td>
<td>262</td>
</tr>
<tr>
<td>840</td>
<td>370</td>
<td>514</td>
</tr>
</tbody>
</table>

Figure S1 Plots of the experimental in chip temperatures vs. on chip temperatures, and their fitted line.
Figure S2 Plots of the experimental and theoretical vapor pressure values against temperatures. The theoretical values were calculated using Wagner’s equation (see Ref. 18.). Error bars represent 2σ uncertainties.