Supplementary Information:

Specific Uptake and Interactions of Peptide Nucleic Acid Derivative with Biomimetic Membranes

Tanmaya Joshi,a Gilles Gasser,c* Lisandra L. Martina* and Leone Spicciaa,b*

a) School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
b) ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia
c) Institute of Inorganic Chemistry, University of Zurich, Winterturerstrasse 190, CH-8057 Zurich, Switzerland.

*Corresponding authors. Email: leone.spiccia@monash.edu Fax: +61 3 9905 4597; Email: lisa.martin@monash.edu Fax: +61 3 9905 4597; Email: gilles.gasser@aci.uzh.ch Fax: +41 44 635 46 03.
Figure S1. Δf-t plot showing the overtone effect for PNA1 (5 μM) uptake on DMPC/cholesterol membrane. Time (t) \geq 50 min corresponds to final PBS rinse.

Figure S2. Δf-t plot showing the overtone effect for PNA2 (5 μM) uptake on DMPC/cholesterol membrane. Time (t) \geq 50 min corresponds to final PBS rinse.
Figure S3. Δf-t plot showing the overtone effect for PNA3 (10 μM) uptake on DMPC/cholesterol membrane. Time (t) ≥ 50 min corresponds to final PBS rinse.

Figure S4. Δf-t plot showing the overtone effect for PNA4 (10 μM) uptake on DMPC/cholesterol membrane. Time (t) ≥ 50 min corresponds to final PBS rinse.
Figure S5. Δf-t plot showing effect of PNA1 concentrations (1-10 μM) on its interaction with DMPC/DMPG (4:1) lipid membrane. Time (t) ≥ 50 min corresponds to final PBS rinse.

Figure S6. Energy dissipation (ΔD) vs. frequency (Δf) dependence of PNA1 activity on DMPC/DMPG (4:1) membrane. The x and y-axis represent Δf and ΔD (10^6) values, respectively. The final buffer rinse is not shown.
Figure S7. Energy dissipation (ΔD) vs. frequency (Δf) dependence of PNA3 activity on DMPC/DMPG (4:1) membrane. The x and y-axis represent Δf and ΔD (10^-6) values, respectively. The final buffer rinse is not shown.

Figure S8. Energy dissipation (ΔD) vs. frequency (Δf) dependence of PNA4 activity on DMPC/DMPG (4:1) membrane. The x and y-axis represent Δf and ΔD (10^-6) values, respectively. The final buffer rinse is not shown.
Figure S9. Energy dissipation (ΔD) vs. frequency (Δf) dependence of PNA1 activity on neat DMPC membrane. The x and y-axis represent Δf and ΔD (10⁻⁶) values, respectively. The final buffer rinse is not shown.

Figure S10. Energy dissipation (ΔD) vs. frequency (Δf) dependence of PNA2 activity on neat DMPC membrane. The x and y-axis represent Δf and ΔD (10⁻⁶) values, respectively. The final buffer rinse is not shown.
Figure S11. Energy dissipation (ΔD) vs. frequency (Δf) dependence of PNA3 activity on neat DMPC membrane. The x and y-axis represent Δf and ΔD (10⁻⁶) values, respectively. The final buffer rinse is not shown.

Figure S12. Energy dissipation (ΔD) vs. frequency (Δf) dependence of PNA4 activity on neat DMPC membrane. The x and y-axis represent Δf and ΔD (10⁻⁶) values, respectively. The final buffer rinse is not shown.