Supporting Information for

Reaction Mechanism of Dimethyl Carbonate Synthesis on Cu-β
Zeolites: DFT and AIM Investigations

Yongli Shen, Qingsen Meng, Shouying Huang, Shengping Wang, Jinlong Gong, and Xinbin Ma*

Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

*E-mail: xbma@tju.edu.cn
Table S1. Local topological properties (in au.) of the electronic charge density distribution calculated at the position of the bond critical points of selected bond paths for energy minima and transition state of the MMC formation reaction from B3PW91/6-31++G** calculations.

| | ρ_b | $\nabla^2 \rho_b$ | ϵ | H_b | G_b | V_b | $\left| V_b \right|/G_b$ | $\left| \lambda_1 \right|/\lambda_3$ |
|---------|----------|-------------------|------------|--------|--------|------|------------------------|------------------------|
| CH$_3$O-OH-CO | | | | | | | | |
| Cu-O1 | 0.0673 | 0.3360 | 0.0433 | -0.0052| 0.0892 | -0.0945| 1.0594 | 0.1594 |
| Cu-O2 | 0.0536 | 0.2961 | 0.0224 | -0.0053| 0.0649 | -0.0703| 1.0832 | 0.1641 |
| Cu-O3 | 0.1184 | 0.5050 | 0.0547 | -0.0206| 0.1469 | -0.1675| 1.1402 | 0.2203 |
| Cu-O4 | 0.1151 | 0.6943 | 0.0692 | -0.0183| 0.1436 | -0.1619| 1.1274 | 0.2209 |
| Cu-C1 | 0.0184 | 0.0546 | 0.0243 | -0.0006| 0.0142 | -0.0148| 1.0423 | 0.1800 |
| C1-O5 | 0.4732 | 0.5600 | 0.0023 | -0.8283| 0.9683 | -1.7965| 1.8553 | 0.4228 |
| C1-O3 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| C1-O4 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| O3-H1 | 0.3488 | -0.6735 | 0.0253 | -0.6573| 0.0705 | -0.7278| 10.3234 | 1.7456 |
| TS | | | | | | | | |
| Cu-O1 | 0.0637 | 0.3028 | 0.0372 | -0.0062| 0.0819 | -0.0882| 1.0769 | 0.1674 |
| Cu-O2 | 0.0211 | 0.0696 | 0.2918 | -0.0017| 0.0192 | -0.0210| 1.0938 | 0.1863 |
| Cu-O3 | 0.0540 | 0.2610 | 0.9483 | -0.0056| 0.0708 | -0.0764| 1.0791 | 0.1678 |
| Cu-O4 | 0.0833 | 0.3877 | 0.0211 | -0.0082| 0.1052 | -0.1134| 1.0779 | 0.1866 |
| Cu-C1 | 0.1084 | 0.2416 | 0.0307 | -0.0350| 0.0954 | -0.1303| 1.3658 | 0.2791 |
| C1-O5 | 0.4512 | 0.4400 | 0.0302 | -0.7862| 0.8962 | -1.6824| 1.8773 | 0.4314 |
| C1-O3 | 0.1085 | 0.1338 | 0.1510 | -0.0302| 0.0636 | -0.0938| 1.4748 | 0.3778 |
| C1-O4 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| O3-H1 | 0.3337 | -2.1733 | 0.0205 | -0.6100| 0.0667 | -0.6768| 10.1469 | 1.7130 |
| CH$_3$OOCOOH | | | | | | | | |
| Cu-O1 | 0.0929 | 0.5582 | 0.0117 | -0.0099| 0.1494 | -0.1593| 1.0663 | 0.1609 |
| Cu-O2 | 0.0261 | 0.0900 | 0.1712 | -0.0029| 0.0254 | -0.0283| 1.1142 | 0.1742 |
| Cu-O3 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| Cu-O4 | 0.0758 | 0.4803 | 0.0467 | -0.0042| 0.1243 | -0.1286| 1.0346 | 0.1525 |
| Cu-C1 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| C1-O5 | 0.4231 | -0.2506 | 0.1299 | -0.7291| 0.6665 | -1.3956| 2.0939 | 0.6033 |
| C1-O3 | 0.3137 | -0.6192 | 0.0856 | -0.4622| 0.3074 | -0.7696| 2.5036 | 0.9345 |
| C1-O4 | 0.2829 | -0.5844 | 0.0686 | -0.3880| 0.2419 | -0.6298| 2.6036 | 1.0209 |
| O3-H1 | 0.3488 | -2.4756 | 0.0175 | -0.6792| 0.0602 | -0.7395| 12.2841 | 1.7378 |
Table S2. Local topological properties (in au.) of the electronic charge density distribution calculated at the position of the bond critical points of selected bond paths for energy minima and transition state of the DMC formation reaction from B3PW91/6-31++G** calculations.

| | \(\rho_b \) | \(\nabla^2 \rho_b \) | \(\varepsilon \) | \(\mathcal{H}_b \) | \(\mathcal{G}_b \) | \(\mathcal{V}_b \) | \(\left| \frac{\mathcal{V}_b}{\mathcal{G}_b} \right| \) | \(\left| \frac{\lambda_1}{\lambda_3} \right| \) |
|-------------|--------------|----------------|-------------|----------------|----------------|----------------|-----------------|-----------------|
| **MMC-CH$_3$OH** |
Cu-O1	0.0797	0.4569	0.0099	-0.0078	0.1220	-0.1298	1.0639	0.1585
Cu-O2	0.0225	0.0773	0.1930	-0.0019	0.0212	-0.0231	1.0896	0.1706
Cu-O4	0.0649	0.3772	0.0392	-0.0047	0.0990	-0.1036	1.0465	0.1560
Cu-O6	0.0348	0.1197	0.0234	-0.0058	0.0357	-0.0415	1.1625	0.1843
C1-O5	0.4208	-0.2669	0.1262	-0.7232	0.6564	-1.3795	2.1016	0.6083
C1-O3	0.3101	-0.6227	0.0804	-0.4537	0.2980	-0.7518	2.5228	0.9509
C1-O4	0.2905	-0.5939	0.0714	-0.4061	0.2576	-0.6638	2.5769	0.9971
C1-O6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
O3-H1	0.3505	-2.4763	0.0183	-0.6806	0.0615	-0.7422	12.0683	1.7430
O3-H2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
O6-H2	0.3434	-2.3683	0.0226	-0.6592	0.0671	-0.7263	10.8241	1.7344
TS								
Cu-O1	0.0959	0.5799	0.0155	-0.0106	0.1556	-0.1663	1.0688	0.1623
Cu-O2	0.0198	0.0676	0.3761	-0.0009	0.0178	-0.0187	1.0506	0.1723
Cu-O4	0.0780	0.4901	0.0603	-0.0048	0.1274	-0.1322	1.0377	0.1560
Cu-O6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
C1-O5	0.4251	-0.1981	0.1169	-0.7338	0.6843	-1.4181	2.0723	0.5824
C1-O3	0.2827	0.0907	0.3718	0.0009	0.0217	-0.0207	0.9539	0.1719
C1-O4	0.3024	-0.6791	0.0753	-0.4296	0.2598	-0.6895	2.6540	1.0690
C1-O6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
O3-H1	0.3527	-2.3817	0.0240	-0.6647	0.0692	-0.7339	10.6055	1.6737
O3-H2	0.3652	-2.5222	0.0237	-0.7032	0.0727	-0.7760	10.6740	1.7537
O6-H2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
DMC-H$_2$O								
Cu-O1	0.0961	0.5776	0.0168	-0.0108	0.1552	-0.1660	1.0696	0.1630
Cu-O2	0.0216	0.0749	0.2857	-0.0013	0.0200	-0.0213	1.0800	0.1709
Cu-O4	0.0821	0.5259	0.0544	-0.0052	0.1366	-0.1418	1.0381	0.1556
Cu-O6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
C1-O5	0.4220	-0.2726	0.1221	-0.7248	0.6567	-1.3815	2.1037	0.6082
C1-O3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
C1-O4	0.2755	-0.5879	0.0657	-0.3661	0.2191	-0.5852	2.6709	1.0618
C1-O6	0.3234	-0.6601	0.1067	-0.4803	0.3153	-0.7956	2.5233	0.9547
O3-H1	0.3514	-2.3753	0.0223	-0.6651	0.0713	-0.7364	10.3282	1.7464
O3-H2	0.3494	-2.3800	0.0218	-0.6647	0.0697	-0.7344	10.5366	1.7470
O6-H2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Table S3. Local topological properties (in au.) of the electronic charge density distribution calculated at the position of the bond critical points of selected bond paths for energy minima and transition state of the dimethoxide formation reaction from B3PW91/6-31++G** calculations.

| Bond | ρ_b | V^2ρ_b | ε | H_b | G_b | V_b | |V_b| / |G_b| |λ_1| / |λ_3|
|---------------------|------|--------|-----|------|------|------|-----|-----|-----|-----|-----|-----|
| CH₃O-OH-CH₂OH | | | | | | | | | | | | |
| Cu-O1 | 0.0750 | 0.3008 | 0.0633 | -0.0231 | 0.0983 | -0.1215 | 1.2360 | 0.1851 |
| Cu-O2 | 0.0656 | 0.2519 | 0.0324 | -0.0195 | 0.0825 | -0.1019 | 1.2352 | 0.1870 |
| Cu-O3 | 0.1314 | 0.4550 | 0.0500 | -0.0520 | 0.1657 | -0.2177 | 1.3138 | 0.2444 |
| Cu-O4 | 0.1304 | 0.4614 | 0.0609 | -0.0506 | 0.1660 | -0.2166 | 1.3048 | 0.2446 |
| Cu-O5 | 0.0221 | 0.0849 | 0.0260 | 0.0003 | 0.0209 | -0.0206 | 0.9856 | 0.1617 |
| O3-H1 | 0.3487 | -1.9587 | 0.0242 | -0.5631 | 0.0734 | -0.6365 | 8.6717 | 1.1738 |
| O3-H2 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| O5-H2 | 0.3599 | -2.0278 | 0.0260 | -0.5826 | 0.0756 | -0.6582 | 8.7063 | 1.1836 |
| TS | | | | | | | | | | | | |
| Cu-O1 | 0.0794 | 0.3336 | 0.0287 | -0.0237 | 0.1071 | -0.1307 | 1.2204 | 0.1763 |
| Cu-O2 | 0.0391 | 0.1449 | 0.0891 | -0.0056 | 0.0418 | -0.0473 | 1.1316 | 0.1855 |
| Cu-O3 | 0.0768 | 0.2389 | 0.0450 | -0.0265 | 0.0863 | -0.1129 | 1.3082 | 0.2405 |
| Cu-O4 | 0.1358 | 0.4961 | 0.0448 | -0.0521 | 0.1761 | -0.2282 | 1.2959 | 0.2294 |
| Cu-O5 | 0.0603 | 0.2108 | 0.0525 | -0.0159 | 0.0686 | -0.0846 | 1.2332 | 0.2076 |
| O3-H1 | 0.3260 | -1.7440 | 0.0048 | -0.5012 | 0.0652 | -0.5663 | 8.6856 | 1.1650 |
| O3-H2 | 0.1129 | -0.0280 | 0.0455 | -0.0699 | 0.0629 | -0.1327 | 2.1097 | 0.5369 |
| O5-H2 | 0.1718 | -0.5169 | 0.0101 | -0.2060 | 0.0713 | -0.2719 | 3.8135 | 0.9066 |
| CH₃O-CH₃O-H₂O | | | | | | | | | | | | |
| Cu-O1 | 0.0850 | 0.3695 | 0.0488 | -0.0264 | 0.1187 | -0.1451 | 1.2224 | 0.1831 |
| Cu-O2 | 0.0243 | 0.0976 | 0.2315 | 0.0003 | 0.0241 | -0.0238 | 0.9876 | 0.1666 |
| Cu-O3 | 0.0245 | 0.0966 | 0.0272 | 0.0001 | 0.0241 | -0.0240 | 0.9959 | 0.1675 |
| Cu-O4 | 0.1432 | 0.5970 | 0.0423 | -0.0541 | 0.2034 | -0.2575 | 1.2660 | 0.2244 |
| Cu-O5 | 0.1198 | 0.3920 | 0.0309 | -0.0477 | 0.1457 | -0.1935 | 1.3281 | 0.2455 |
| O3-H1 | 0.3550 | -2.0379 | 0.0234 | -0.5816 | 0.0721 | -0.6537 | 9.0666 | 1.1790 |
| O3-H2 | 0.3529 | -2.0422 | 0.0234 | -0.5810 | 0.0704 | -0.6514 | 9.2528 | 1.1811 |
| O5-H2 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |

53
Table S4. Local topological properties (in au.) of the electronic charge density distribution calculated at the position of the bond critical points of selected bond paths for energy minima and transition state of the CO insertion reaction from B3PW91/6-31++G** calculations.

| | ρ_b | $\nabla^2 \rho_b$ | ε | H_b | G_b | V_b | $|V_b|/G_b$ | $|\lambda_1|/\lambda_3$ |
|--------|----------|-------------------|---------------|--------|--------|--------|-------------|------------------|
| **CH$_3$O-CH$_3$O-CO** | | | | | | | | |
| Cu-O1 | 0.0590 | 0.2759 | 0.0227 | -0.0056 | 0.0745 | -0.0801| 1.0752 | 0.1607 |
| Cu-O2 | 0.0608 | 0.2920 | 0.0448 | -0.0051 | 0.0781 | -0.0833| 1.0666 | 0.1599 |
| Cu-O3 | 0.1141 | 0.4898 | 0.0656 | -0.0183 | 0.1408 | -0.1591| 1.1300 | 0.2205 |
| Cu-O4 | 0.1143 | 0.4888 | -0.0430 | -0.0185 | 0.1407 | -0.1592| 1.1315 | 0.2178 |
| Cu-C1 | 0.0232 | 0.0641 | 0.3786 | -0.0022 | 0.0182 | -0.0204| 1.1209 | 0.1978 |
| C1-O5 | 0.4719 | 0.5799 | 0.0020 | -0.8241 | 0.9691 | -1.7932| 1.8504 | 0.4203 |
| C1-O3 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| C1-O4 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| **TS** | | | | | | | | |
| Cu-O1 | 0.0622 | 0.2988 | 0.0349 | -0.0053 | 0.0800 | -0.0853| 1.0663 | 0.1628 |
| Cu-O2 | 0.0321 | 0.1077 | 0.0986 | -0.0048 | 0.0317 | -0.0365| 1.1515 | 0.1860 |
| Cu-O3 | 0.0421 | 0.1800 | 1.8199 | -0.0049 | 0.0499 | -0.0548| 1.0982 | 0.1780 |
| Cu-O4 | 0.1108 | 0.5106 | 0.0463 | -0.0166 | 0.1444 | -0.1610| 1.1150 | 0.2064 |
| Cu-C1 | 0.0933 | 0.2176 | 0.0177 | -0.0275 | 0.0819 | -0.1093| 1.3346 | 0.2639 |
| C1-O5 | 0.4555 | 0.4870 | 0.0165 | -0.7931 | 0.9148 | -1.7079| 1.8670 | 0.4252 |
| C1-O3 | 0.0868 | 0.1531 | 0.1345 | -0.0150 | 0.0532 | -0.0682| 1.2820 | 0.3234 |
| C1-O4 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| **DMC** | | | | | | | | |
| Cu-O1 | 0.0946 | 0.5703 | 0.0135 | -0.0103 | 0.1528 | -0.1632| 1.0681 | 0.1617 |
| Cu-O2 | 0.0232 | 0.0792 | 0.2372 | -0.0020 | 0.0218 | -0.0237| 1.0872 | 0.1733 |
| Cu-O3 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| Cu-O4 | 0.0784 | 0.4994 | 0.0485 | -0.0046 | 0.1294 | -0.1340| 1.0355 | 0.1535 |
| Cu-C1 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| C1-O5 | 0.4211 | -0.2430 | 0.1257 | -0.7235 | 0.6628 | -1.3863| 2.0916 | 0.6004 |
| C1-O3 | 0.3191 | -0.6110 | 0.1033 | -0.4735 | 0.3207 | -0.7942| 2.4764 | 0.9190 |
| C1-O4 | 0.2788 | -0.5779 | 0.0688 | -0.3777 | 0.2333 | -0.6110| 2.6189 | 1.0369 |