Supporting Information

Highly regioselective aminobromination of α,β-unsaturated nitro compounds with benzyl carbamate/N-bromosuccinimide as nitrogen/bromine source

Xiaoyun Ji,a Zhiqiang Duan,a Yu Qian,a Jianlin Han,*a Guigen Lia,c and Yi Pan*a,b

a School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China. Fax: 86-25-83593153; Tel: 86-25-83593153; E-mail: hanjl@nju.edu.cn

b State of Key Laboratory of Coordination, Nanjing University, Nanjing, 210093, China. E-mail: yipan@nju.edu.cn

c Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA

Table of Contents

1. General information ---2

2. Aminobromination of α,β-unsaturated nitro compounds with CbzNH_2/NBS--2

3. X-ray crystal structure of compound 3a --------------------------------------8

4. Cleavage of the N-carbobenzoxy group of 3a -----------------------------9

5. 1H and 13C NMR spectra for compound 3 and 4 ------------------------10
1. General information

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. Reaction progress was monitored by TLC using silica gel 60F-254 with detection by UV. Flash chromatography was performed using silica gel 60 (200-300mesh). Thin layer chromatography was carried out on silica gel 60 F-254 TLC plates of 20 cm × 20 cm. Melting points are uncorrected. IR spectra were collected on Bruker Vector 22 in KBr pellets. 1H and 13C NMR (TMS used as internal standard) spectra were recorded with a Bruker ARX300 spectrometer. High resolution mass spectra for all the new compounds were done by Micro mass Q-Tof instrument (ESI). The crystal structure was recorded on a X-ray diffraction spectrometer.

2. Typical procedure for aminohalogenation of α,β-unsaturated nitro compounds with CbzNH$_2$/NBS

Into a vial were added α,β-unsaturated nitro compounds substrates (0.5 mmol), NBS (1.5 mmol), CbzNH$_2$ (1.5 mmol), K$_3$PO$_4$ (5 mol%). Then, 3 mL of acetonitrile was added to the vial. The solution was stirred at room temperature without the protection of inert gas and monitored by TLC. When the reaction was completed, the mixture was directly purified by TLC plate (Petroleum ether/EtOAc, 4:1).

Benzyl 2,2-dibromo-2-nitro-1-phenylethylcarbamate (3a)

White solid (93% yield). mp 86–87 °C. 1H NMR (300 MHz, CDCl$_3$): δ 7.35–7.45 (m, 10H), 6.42 (d, $J = 10.2$ Hz, 1H), 5.84 (d, $J = 10.2$ Hz, 1H), 5.08–5.17 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 154.92, 135.58, 133.38, 129.8, 129.1, 128.67, 128.63, 128.52, 128.41, 93.83, 67.99, 65.15. IR (KBr): $\nu = 3280, 3064, 2965, 1690, 1573, 1531, 1251$ cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd For C$_{16}$H$_{14}$N$_2$O$_4$Br$_2$Na: 480.9186; found: 480.9193.

Benzyl 2,2-dibromo-1-(2-chlorophenyl)-2-nitroethylcarbamate (3b)

White solid (55% yield). mp 98–99 °C. 1H NMR (300 MHz, CDCl$_3$): δ 7.29–7.43 (m, 10H), 6.42 (d, $J = 10.2$ Hz, 1H), 5.84 (d, $J = 10.2$ Hz, 1H), 5.08–5.17 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 154.92, 135.58, 133.38, 129.8, 129.1, 128.67, 128.63, 128.52, 128.41, 93.83, 67.99, 65.15. IR (KBr): $\nu = 3280, 3064, 2965, 1690, 1573, 1531, 1251$ cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd For C$_{16}$H$_{14}$N$_2$O$_4$Br$_2$Na: 480.9186; found: 480.9193.
9H), 6.03 (d, J = 10.3 Hz, 1H), 5.79 (d, J = 10.1 Hz, 1H), 5.02–5.21 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 154.74, 135.99, 135.40, 131.90, 130.42, 128.9, 128.85, 128.71, 128.68, 128.61, 128.41, 93.10, 68.10, 64.52. IR (KBr): ν = 3339, 3035, 2949, 1693, 1576, 1536, 1352, 1286, 1260, 1028 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd. For C$_{16}$H$_{13}$N$_2$O$_4$Br$_2$ClNa: 514.8798; found 514.8802.

Benzyl 2,2-dibromo-1-(3-chlorophenyl)-2-nitroethylcarbamate (3c)

White solid (88% yield). mp 87–89 °C. 1H NMR (300 MHz, CDCl$_3$): δ 7.47–7.57 (m, 2H), 7.28–7.43 (m, 7H), 6.03 (d, J = 10.0 Hz, 1H), 5.94 (d, J = 10.0 Hz, 1H), 5.05–5.19 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 154.75, 135.38, 132.45, 131.85, 130.69, 128.69, 128.62, 128.41, 128.13, 124.26, 92.99, 68.10, 64.59. IR (KBr): ν = 3257, 3059, 2967, 1704, 1683, 1577, 1540, 1494, 1258 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd. For C$_{16}$H$_{13}$N$_2$O$_4$Br$_2$ClNa: 514.8797; found 514.8802.

Benzyl 2,2-dibromo-1-(4-bromophenyl)-2-nitroethylcarbamate (3d)

Colorless oil (91% yield). 1H NMR (300 MHz, CDCl$_3$): δ 7.47–7.57 (m, 2H), 7.28–7.42 (m, 7H), 6.03 (d, J = 9.89 Hz, 1H), 5.94 (d, J = 9.8 Hz, 1H), 5.03–5.19 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 154.73, 135.38, 132.45, 131.85, 130.69, 128.69, 128.62, 128.41, 124.26, 92.99, 68.10, 64.59. IR (KBr): ν = 3409, 3310, 3034, 2958, 1708, 1577, 1490, 1323, 1232 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd. For C$_{16}$H$_{13}$N$_2$O$_4$Br$_3$ClNa: 558.8284; found 558.8298.

Benzyl 2,2-dibromo-1-(3-fluorophenyl)-2-nitroethylcarbamate (3e)

White solid (86% yield). mp 102–104 °C. 1H NMR (300 MHz, CDCl$_3$): δ 7.29–7.42 (m, 6H), 7.07–7.25 (m, 3H), 6.04 (d, J = 10.3 Hz, 1H), 5.81 (d, J = 10.1 Hz, 1H), 5.06–5.2 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 162.43 (d, 1J_{CF} = 248.09 Hz), 154.82, 135.73 (d, 3J_{CF} = 6.43 Hz), 135.42, 130.23 (d, 3J_{CF} = 7.81 Hz), 128.68, 128.6, 128.39, 125.06, 116.87 (d, 2J_{CF} = 21.13 Hz), 116.2 (d, 2J_{CF} = 23.12 Hz), 92.91, 68.12, 64.60. IR (KBr): ν = 3278, 3063, 2968, 1689, 1575, 1533, 1251, 1236 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd. For C$_{16}$H$_{13}$N$_2$O$_4$Br$_2$FNa: 498.9105; found 498.9099.

Benzyl 2,2-dibromo-1-(4-fluorophenyl)-2-nitroethylcarbamate (3f)
White solid (85% yield). mp 91–93 °C. 1H NMR (300 MHz, CDCl$_3$): δ 7.39–7.49 (m, 2H), 7.28–7.38 (m, 5H), 7.02–7.13 (m, 2H), 6.03 (d, $J = 10.1$ Hz, 1H), 5.83 (d, $J = 10.2$ Hz, 1H), 5.05–5.19 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 163.35 (d, $J_{CF} = 250.46$ Hz), 154.81, 135.46, 131.02 (d, $J_{CF} = 8.37$ Hz), 129.32, 128.68, 128.59, 128.37, 115.74 (d, $J_{CF} = 22.04$ Hz), 93.55, 68.06, 64.52. IR (KBr): $\nu = 3264, 3062, 3038, 1701, 1686, 1579, 1511, 1326, 1257, 1232$ cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd. For C$_{16}$H$_{13}$N$_2$O$_4$Br$_2$FNa: 498.9104; found 498.9099.

Benzyl 2,2-dibromo-2-nitro-1-m-tolylethylcarbamate (3g)

White solid (97% yield). mp 109–111 °C. 1H NMR (300 MHz, CDCl$_3$): δ 7.13–7.46 (m, 9H), 6.01 (d, $J = 10.3$ Hz, 1H), 5.87 (d, $J = 10.4$ Hz, 1H), 5.01–5.24 (m, 2H), 2.35 (s, 3H). 13C NMR (75 MHz, CDCl$_3$): δ 154.84, 138.44, 135.53, 133.25, 130.53, 129.77, 128.65, 128.57, 128.52, 128.43, 125.98, 93.79, 67.95, 65.11, 21.48. IR (KBr): $\nu = 3275, 3060, 3038, 1705, 1688, 1574, 1533, 1251, 1054$ cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd. For C$_{17}$H$_{16}$N$_2$O$_4$Br$_2$Na 494.9336; found 494.935.

Benzyl 2,2-dibromo-2-nitro-1-p-tolylethylcarbamate (3h)

White solid (62% yield). mp 93–95 °C. 1H NMR (300 MHz, CDCl$_3$): δ 7.27–7.43 (m, 7H), 7.14–7.22 (m, 2H), 6.01 (d, $J = 10.2$ Hz, 1H), 5.83 (d, $J = 10.2$ Hz, 1H), 5.05–5.19 (m, 2H), 2.36 (s, 3H). 13C NMR (75 MHz, CDCl$_3$): δ 154.89, 139.88, 135.57, 130.32, 129.34, 128.89, 128.65, 128.52, 128.40, 94.06, 67.93, 64.95, 21.23. IR (KBr): $\nu = 3411, 3312, 3033, 2957, 1712, 1575, 1513, 1324, 1233, 1049$ cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd. For C$_{17}$H$_{16}$N$_2$O$_4$Br$_2$Na: 494.9340; found 494.9350.

Benzyl 2,2-dibromo-1-(naphthalen-1-yl)-2-nitroethylcarbamate (3i)

Yellow solid (89% yield). mp 103–105 °C. 1H NMR (300 MHz, CDCl$_3$): δ 8.44 (d, $J = 8.12$ Hz, 1H), 7.45–7.98 (m, 6H), 7.27–7.43 (m, 5H), 7.1 (d, $J = 10.2$ Hz, 1H), 5.94 (d, $J = 10.1$ Hz, 1H), 5.01–5.18 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 155.01, 135.44, 133.74, 132.01, 131.16, 130.56, 129.03, 128.64, 128.52, 128.39, 127.32, 126.41, 125.24, 124.92, 123.44, 93.76, 68.02, 58.63. IR (KBr): $\nu = 3412, 3311, 3065, 3035, 1713, 1577, 1322, 1058, 910$ cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd For
C$_{20}$H$_{16}$N$_2$O$_4$Br$_2$Na: 530.9350; found 530.9350.

Benzy1 2,2-dibromo-1-(3-methoxyphenyl)-2-nitroethylcarbamate (3j)

White solid (83% yield). mp 97–99°C. 1H NMR (300 MHz, CDCl$_3$): δ 7.28–7.45 (m, 6H), 6.89–7.05 (m, 3H), 6.01 (d, $J = 10.3$ Hz, 1H), 5.81 (d, $J = 10.3$ Hz, 1H), 5.05–5.19 (m, 2H), 3.81 (s, 3H). 13C NMR (75 MHz, CDCl$_3$): δ 159.52, 154.82, 135.50, 134.74, 129.67, 128.64, 128.52, 128.4, 121.17, 115.16, 114.92, 93.53, 67.98, 65.06, 55.38. IR (KBr): ν = 3286, 3062, 2960, 2886, 1691, 1574, 1531, 1251, 1230, 1056 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd For C$_{17}$H$_{16}$N$_2$O$_5$Br$_2$Na: 510.9304; found 510.9299.

Benzy1 2,2-dibromo-1-(4-methoxyphenyl)-2-nitroethylcarbamate (3k)

Yellow oil (95% yield). 1H NMR (300 MHz, CDCl$_3$): δ 7.29–7.44 (m, 7H), 6.84–6.93 (m, 2H), 5.99 (d, $J = 10.4$ Hz, 1H), 5.79 (d, $J = 10.2$ Hz, 1H), 5.05–5.21 (m, 2H), 3.81 (s, 3H). 13C NMR (75 MHz, CDCl$_3$): δ 160.54, 154.85, 135.57, 130.28, 128.64, 128.51, 128.38, 125.17, 113.99, 94.28, 67.92, 64.73, 55.33. IR (KBr): ν = 3411, 3317, 2959, 2839, 1713, 1574, 1513, 1250, 1030 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd For C$_{17}$H$_{16}$N$_2$O$_5$Br$_2$Na: 510.9299; found 510.9299.

Benzy1 1-(4-(benzyloxy)phenyl)-2,2-dibromo-2-nitroethylcarbamate (3l)

Colorless oil (78% yield). 1H NMR (300 MHz, CDCl$_3$): δ 7.27–7.58 (m, 12H), 6.94–7.08 (m, 2H), 6.53 (d, $J = 10.3$ Hz, 1H), 6.44 (d, $J = 10.2$ Hz, 1H), 5.03–5.21 (m, 4H). 13C NMR (75 MHz, CDCl$_3$): δ 156.79, 155.06, 136.15, 135.79, 131.01, 130.62, 128.80, 128.59, 128.37, 128.24, 127.35, 121.05, 112.91, 94.01, 70.69, 67.68, 62.11. IR (KBr): ν = 3412, 3316, 3033, 2955, 2882, 1716, 1575, 1497, 1227, 1043 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd. For C$_{23}$H$_{20}$N$_2$O$_5$Br$_2$Na: 586.9605; found 586.9612.

Benzy1 2,2-dibromo-2-nitro-1-(4-(trifluoromethyl)phenyl)ethylcarbamate (3m)

Colorless oil (83% yield). 1H NMR (300 MHz, CDCl$_3$): δ 7.66 (d, $J = 8.52$ Hz, 2H), 7.59 (d, $J = 8.52$ Hz, 2H), 7.29–7.43 (m, 5H), 6.12 (d, $J = 10.4$ Hz, 1H), 5.85 (d, $J =$
10.2 Hz, 1H), 5.05–5.19 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 154.69, 137.36, 135.32, 131.85 (q, 2J$_{CF}$ = 32.91 Hz), 129.64, 128.68, 128.4, 125.59 (q, 3J$_{CF}$ = 3.27 Hz), 123.65 (q, 1J$_{CF}$ = 273.29 Hz), 92.46, 68.18, 64.64. IR (KBr): ν = 3415, 3311, 3035, 2959, 1712, 1578, 1326, 1131, 1071, 1018 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd For C$_{17}$H$_3$N$_2$O$_4$Br$_2$F$_3$Na: 548.9075; found 548.9067.

Benzyl 2,2-dibromo-1-(furan-2-yl)-2-nitroethylcarbamate (3n)

Brown oil (68% yield). 1H NMR (300 MHz, CDCl$_3$): δ 7.42 (dd, J = 0.75, 1.78 Hz, 1H), 7.31–7.41 (m, 5H), 6.44 (d, J = 3.32 Hz, 1H), 6.38 (dd, J = 1.9, 3.35 Hz, 1H), 6.24 (d, J = 10.44 Hz, 1H), 5.84 (d, J = 10.23 Hz, 1H), 5.11–5.26 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 155.07, 146.03, 143.74, 135.49, 128.68, 128.58, 128.39, 111.54, 110.95, 91.18, 68.11, 60.45. IR (KBr): ν = 3254, 3034, 2956, 1694, 1572, 1538, 1323, 1257, 1016 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd For C$_{14}$H$_{12}$N$_2$O$_5$Br$_2$Na: 470.8971; found 470.8986.

Benzyl 2,2-dibromo-2-nitro-1-(thiophen-2-yl)ethylcarbamate (3o)

Yellow solid (72% yield). mp 98–100 °C. 1H NMR (300 MHz, CDCl$_3$): δ 7.29–7.42 (m, 6H), 7.18 (d, J = 3.72 Hz, 1H), 7.01 (dd, J = 3.62, 5.13 Hz, 1H), 6.38 (d, J = 10.44 Hz, 1H), 5.7 (d, J = 10.39 Hz, 1H), 5.07–5.24 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 154.72, 135.42, 129.58, 128.66, 128.57, 128.38, 127.37, 126.9, 126.83, 92.62, 68.11, 62.18. IR (KBr): ν = 3269, 3033, 2955, 1693, 1577, 1522, 1323, 1249 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd For C$_{14}$H$_{12}$N$_2$O$_4$Br$_2$Na: 486.8753; found 486.8757.

Benzyl 1,1-dibromo-1-nitrononan-2-ylcarbamate (3p)

Colorless oil (82% yield). 1H NMR (300 MHz, CDCl$_3$): δ 7.31–7.42 (m, 5H), 5.08–5.25 (m, 2H), 4.98 (d, J = 10.47 Hz, 1H), 4.65–4.88 (m, 1H), 1.76–1.97 (m, 1H), 1.07–1.55 (m, 11H), 0.88 (t, J = 6.97Hz, 3H). 13C NMR (75 MHz, CDCl$_3$): δ 155.57, 135.83, 128.62, 128.44, 128.21, 93.84, 67.66, 62.43, 32.27, 31.65, 29.00, 28.92, 25.81, 22.60, 14.09. IR (KBr): ν = 3404, 3309, 2955, 2928, 2857, 1709, 1575, 1326, 1247, 1052 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd For C$_{17}$H$_{24}$N$_2$O$_4$Br$_2$Na: 502.9978;
found 502.9976.

Benzyl 2,2-dibromo-1-(3-bromo-4-methoxyphenyl)-2-nitroethylcarbamate (3q)

Colorless oil (87% yield). 1H NMR (300 MHz, CDCl$_3$): δ 7.65 (d, $J = 2.36$ Hz, 1H), 7.28–7.42 (m, 6H), 6.86 (d, $J = 8.57$ Hz, 1H), 5.99 (d, $J = 10.42$ Hz, 1H), 5.84 (d, $J = 10.26$ Hz, 1H), 5.04–5.18 (m, 2H), 3.9 (s, 3H). 13C NMR (75 MHz, CDCl$_3$): δ 156.88, 154.67, 135.4, 133.62, 129.65, 128.67, 128.57, 128.39, 126.69, 111.79, 111.48, 93.51, 68.07, 64.12, 56.34. IR (KBr): ν = 3409, 3309, 2209, 2958, 2841, 1712, 1576, 1498, 1294, 1056 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd For C$_{17}$H$_{15}$N$_2$O$_5$Br$_3$Na: 588.8406; found 588.8404.

Benzyl 2,2-dibromo-1-(4-cyanophenyl)-2-nitroethylcarbamate (3r)

Colorless oil (81% yield). 1H NMR (300 MHz, CDCl$_3$): δ 7.68 (d, $J = 8.35$ Hz, 2H), 7.59 (d, $J = 8.35$ Hz, 2H), 7.28–7.41 (m, 5H), 6.11 (d, $J = 10.51$ Hz, 1H), 5.92 (d, $J = 10.41$ Hz, 1H), 5.06–5.18 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 154.59, 138.48, 135.19, 132.30, 129.95, 128.69, 128.41, 117.89, 113.83, 91.88, 68.27, 64.62. IR (KBr): ν = 3312, 2957, 2232, 1731, 1715, 1576, 1506, 1232, 1050 cm$^{-1}$. HRMS (ESI/[M+Na]$^+$) Calcd. For C$_{17}$H$_{13}$N$_3$O$_4$Br$_2$Na: 505.9150; found 505.9146.
3. X-ray crystal structure of compound 3a

Figure 1 X-ray crystal structure of compound 3a (CCDC number 859296)
4. Removal of *N*-carbobenzoxy protecting group

To a flask containing 3a (2 mmol), a solution of HBr in AcOH (5mL, 33% w/w) was added. The mixture was stirred at room temperature for 2 h. When evolution of bubbles stopped, excess HBr and HOAc were filtered, giving white powder 4 with 85% yield.

2,2-dibromo-2-nitro-1-phenylethanaminium bromide (4) White solid (85% yield).

1H NMR (300 MHz, D$_2$O): δ 7.48–7.53 (m, 5H), 5.33 (s, 1H). 13C NMR (75 MHz, D$_2$O): δ 131.66, 130.6, 129.7, 128.42, 127.67, 59.26. IR (KBr): ν = 3264, 3013, 2908, 1959, 1630, 1573, 1499, 1399, 997cm$^{-1}$.

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
5. 1H and 13C NMR spectra for compound 3 and 4

1H and 13C NMR spectra of 3a
1H and 13C NMR spectra of 3b
1H and 13C NMR spectra of 3c
1H and 13C NMR spectra of 3d
1H and 13C NMR spectra of 3e
1H and 13C NMR spectra of 3f
1H and 13C NMR spectra of 3g
\(^1\)H and \(^{13}\)C NMR spectra of 3h
1H and 13C NMR spectra of 3i
1H and 13C NMR spectra of 3j
1H and 13C NMR spectra of 3k
1H and 13C NMR spectra of 3l
1H and 13C NMR spectra of 3m
1H and 13C NMR spectra of 3n
1H and 13C NMR spectra of 3o

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
1H and 13C NMR spectra of 3p
1H and 13C NMR spectra of 3q
\[^1H \text{ and } ^{13}C \text{ NMR spectra of } 3\alpha \]
1H and 13C NMR spectra of Deprotection Product of 4