Supporting Information

Wet-Milled Transition Metal Oxide Nanoparticles as Buffer Layers for Bulk Heterojunction Solar Cells

Jen-Hsien Huang,¹ Tzu-Yen Huang,² Hung-Yu Wei,³ Kuo-Chuan Ho²,³ and Chih-Wei Chu¹,⁴∗

¹ Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
² Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
³ Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan 106
⁴ Department of Photonics National Chiao Tung University, Hsinchu, Taiwan 300
Figure S1. The comparison of SEM images for (a) raw V$_2$O$_5$; (c) raw WO$_3$ and (b) V$_2$O$_5$; (d) WO$_3$ after grinding. It can be found that the particle size of the V$_2$O$_5$ and WO$_3$ decreases significantly after grinding for 240 min.
Figure S2. The XPS spectrum of the MoO$_3$ film cast from the as-prepared solution. Based on the survey spectrum, it can be found that the chemical composition is totally contributed from the MoO$_3$ powder without any impurity. This indicates that this solution–based method preserves the intrinsic electronic properties of MoO$_3$.
Figure S3. (a) The effect of grinding time on cell performance (P3HT:PCBM) with MoO$_3$ as buffer layers; (b) the effect of MoO$_3$ solution concentration on the cell performance.