Supporting Information for

A polymeric membrane permeabilizer displaying densely packed arrays of crown ether lateral substituents

Ming Liu†, Anna Bertova‡, Nicolas Illy†, Jacques Penelle†, Karol Ondrias‡, Valessa Barbier†*

†Institut de Chimie et Matériaux Paris-Est (ICMPE), 2-8 rue Henri Dunant, 94320 Thiais, France
‡Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5,833 34 Bratislava, Slovak Republic.

barbier@icmpe.cnrs.fr
Table of Contents

Materials .. S3
Instrumentation .. S3
Synthesis of (1p) .. S3
Synthesis of (1) .. S4
Polymerization of (1) .. S4
Saturation Experiments ... S5
BLM conductance measurements ... S5
Scheme S1. synthesis of the monomer (1) .. S7
Table S1. Elemental analysis of (1) and poly(1) .. S7
Figure S1. 1H NMR of (1) (400 MHz, (CDCl$_3$, room temperature)) S8
Figure S2. 13C NMR of (1) (400 MHz, (CDCl$_3$, room temperature)) S8
Figure S3. 13C NMR of Poly(1) ((400 MHz, (CD$_3$)$_2$CO, room temperature)) S9
Figure S4. A variation of Na$^+$ current induced by poly(1) incorporated in BLM; 250/50 mmol/l NaCl cis / trans solutions. Voltage 0 mV. The lines on the right mark the closed state of the channels... S10
Figure S5. A variation of Na$^+$ single channel currents induced by poly(1) incorporated in BLM; 250/50 mmol/l NaCl cis / trans solutions. Voltage 0 mV. $E_{rev} = 30$ mV. Conductance ~20 pS (top trace) and ~233 pS (bottom trace). The lines on the right mark the closed state of the channels... S11
Figure S6. Examples of the lowest Na$^+$ single channel currents induced by poly(1) incorporated in BLM; 250/50 mmol/l NaCl cis / trans solutions. Voltage 0 mV. $E_{rev} = 30$ mV. Conductance ~13 pS (top trace) and ~53 pS (lower traces). The lines on the right mark the closed state of the channels... S12
Figure S7. Ca$^{2+}$ single channel current induced by poly(1) incorporated in BLM; 43.6/100 mmol/l Ca(OH)$_2$/KOH cis / trans solutions. Voltage 0 mV. The lines on the right mark the closed state of the channels... S13
Figure S8. Ca$^{2+}$ and K$^+$ single channel currents induced by poly(1) incorporated in BLM at the given voltages; 43.6/100 mmol/l Ca(OH)$_2$/KOH cis / trans solutions. Ca$^{2+}$ current are observed at -60 and -20 mV. K$^+$ current are observed at +20 and +60 mV. The lines on the right mark the closed state of the channels... S14
Figure S9. Cation over anion selectivity. Single channel IV profiles; poly(1) 25fmol/l; 50/250 mmol/l NaCl cis / trans solutions. The conductance g, the reversal potential E_{rev}, and the Na$^+$/Cl$^-$ selectivity ratio P_{Na^+}/P_{Cl^-} were: (○). 161 pS, -32 mV, 11.2/1. (△) 587 pS, -30 mV, 8.6/1. (●). 7.7 nS, -27 mV, 6.3/1 (▲). 47 nS, -20 mV, 3.5/1. K$^+$/Na$^+$ selectivity. 250/250 mmol/l KCl/NaCl cis/trans solutions: g=8.0 nS, E_{rev}=-1.5 mV, P_{Na^+}/P_{K^+}=-1 (▼)............. S15
Materials. 2-(Hydroxymethyl)-18-crown-6 (95%, Aldrich), malonyl chloride (99%, Fluka), phosphazene base BuP₄ solution (1.0 mol.L⁻¹ solution in hexane, Fluka), thiophenol (≥ 99%, Aldrich), anhydrous dimethyl sulfoxide (99.9%, Aldrich), 1,2-dibromoethane (99%, Aldrich), potassium carbonate (99.9%, Aldrich), sodium bicarbonate (≥ 99.0%, Fluka), dichloromethane (≥ 99.5%, Carlo Erba), dioleoyl-glycero-phosphatidylcholine and dioleoyl-glycero-phosphoethanolamine (Avanti Polar Lipids, Alabaster, AL, USA) were used as received. Tetrahydrofuran (THF) and toluene were dried with sodium-benzophenone and then distilled under argon.

Instrumentation. ¹H- and ¹³C-NMR spectra were recorded in CDCl₃ or CD₃COCD₃ using a Bruker 400 MHz NMR spectrometer. Size Exclusion Chromatography (SEC) experiments were performed in THF containing 0.1 wt % tetra-n-butylammonium bromide (0.8 mL.min⁻¹) at room temperature using a Shimadzu LC-10AD pump, and one PLgel Polymer Laboratories columns (3 μm Mix-E, special column for low molecular weights, separation range: up to 30 x 10³). A Wyatt Technology Optilab Rex interferometric refractometer (690 nm laser. Relative molecular weights were obtained using a polystyrene calibration. Absolute molecular weights were determined by quantitative ¹H-NMR. UV and visible spectra were obtained with a Varian Cay 50Bis instrument.

Synthesis of (1p). Malonyl chloride (1.66 g, 11.0 mmol) was added dropwise to a solution of hydroxymethyl-18-crown-6 (3.00 g, 10.2 mmol) in toluene (8 mL). The mixture was stirred for 3 days at 55 °C. CH₂Cl₂ (100 mL) was added to dissolve the filtrated solution and the resulting organic phase was washed three times with a saturated NaHCO₃ aqueous solution (80 mL) and five times with distilled water (50 mL). The organic phase was then dried over magnesium sulfate and after evaporation, a brownish oil was recovered. The product was extracted with hot pentane (120 mL) in a round bottom flask (about twenty times, until the...
extraction yield was close to zero). 1p (yield = 55.4 %), a pale yellow oil, was recovered after evaporation of the combined pentane extracts

1H NMR (CDCl$_3$, 400 MHz): δ (ppm) = 3.41 (s, 2H, CH$_2$C(CO$_2$R)$_2$), 3.50–3.85 (m, 46H, crown ether), 4.15–4.19 (m, 2H, -CH$_2$-crown ether), 4.26–4.30 (m, 2H, -CH$_2$ -crown-ether);

13C NMR (CDCl$_3$, 100 MHz): δ (ppm) = 40.3 (-CH$_2$(CO$_2$R)$_2$), 63.9 (-CH$_2$ -crown-ether), 69.41, 69.47, 69.56, 69.64, 69.69, 69.76, 69.79, 69.83, 69.88, 70.03, 76.4 (crown ether), 165.3 (CH$_2$(CO$_2$R)$_2$).

FT-IR (cm$^{-1}$): 2865, 1732, 1451, 1350, 1252, 1111, 945, 847.

Synthesis of (1). A mixture of (1p) (3.6 g, 5.5 mmol), 1,2-dibromoethane (2.05 g, 11.0 mmol), anhydrous carbonate K$_2$CO$_3$ (4.55g, 33.0 mmol) and DMSO (4 mL) was stirred vigorously for 3 days at room temperature. 30 mL of water was added to the resulting mixture, and the aqueous phase was extracted with five 30 mL CH$_2$Cl$_2$. The combined CH$_2$Cl$_2$ extracts were washed with distilled water (three times), and then dried over magnesium sulfate. CH$_2$Cl$_2$ was evaporated and the residue was purified by column chromatography (SiO$_2$; petroleum ether/ EtOAc (1:1, v/v), then EtOAc/MeOH(1:1, v/v)] to give 1 (1.5g, 69.9 %) as a pale yellow oil. Yield = 57.6 %.

1H NMR (CDCl$_3$, 400 MHz): δ (ppm) = 1.48 (s, 4H, (CH$_2$)$_2$C(CO$_2$R)$_2$), 3.62–3.84 (m, 38H, crown ether), 4.13–4.19 (m, 2H, -CH$_2$-crown ether), 4.25–4.29 (m, 2H, -CH$_2$-crown ether).

13C NMR (CDCl$_3$, 100 MHz): δ (ppm) = 15.9 ((CH$_2$)$_2$C(CO$_2$R)$_2$), 27.0 ((CH$_2$)$_2$C(CO$_2$R)$_2$), 63.8 (-CH$_2$-crown ether), 69.00, 69.39, 69.69, 69.78, 69.85, 69.94, 69.99, 75.98 (crown ether), 168.25 (CH$_2$(CO$_2$R)$_2$).

FT-IR (cm$^{-1}$): 2865, 1726, 1451, 1299, 1250, 1109, 990, 944, 848, 752.

Polymerization of (1). Filling of the polymerization tube with the reagents prior to its closure was carried out in a glove-box. Monomer (1) (1.35 g, 2.05 mmol) was introduced under argon into a polymerization tube fitted with a Rotaflo$^\text{®}$. THF (1.0 mL), thiophenol (13 µL, 0.13
mmol) and the phosphazene base (260 µL, 1.0 mol.L⁻¹ solution in hexane) were successively added at room temperature. After careful closure of the reaction tube, the mixture was stirred at 60°C and let to react. The reaction was quenched with a 12 mol.L⁻¹ HCl aqueous solution after 24 h. The polymer was purified by dialysis (membrane cut-off of 1000 Da). Poly(1) was recovered as a viscous liquid after being dried under vacuum for 24 h.

¹H NMR (CD₃COCD₃, 400 MHz): δ (ppm) = 1.80–1.92 (br, -CH₂CH₂C(CO₂R)₂), 3.56–3.88 (br, crown ether), 4.14–4.44 (br, -CH₂-crown ether).

¹³C NMR (CD₃COCD₃, 100 MHz): δ (ppm) = 28.2 ((CH₂)₂C(CO₂R)₂), 56.4 ((CH₂)₂C(CO₂R)₂), 64.9 (-CH₂ -crown ether), 69.4–70.3, 76.3 (crown ether), 170.03 (CH₂(CO₂R)₂).

FT-IR (cm⁻¹): 2866, 1730, 1452, 1351, 1250, 1185, 1109, 991, 944, 847, 746.

Saturation Experiments. A 0.01mol/L metal hydroxide solution containing a known amount of picric salt (Li, Na and K) was vigorously shaken in a separatory funnel with an equal volume of a dichloromethane solution of the crown ether (i.e. (1), poly(1), 7. 10⁻⁵ mol/L). The organic layer was removed and the picrate concentration was measured by UV-spectroscopy, using the extinction coefficients reported by Pederson (λₘₚₙₙ = 357 nm, ε = 1.5 x 10⁴ in water and λₘₚₙₙ = 378 nm, ε = 1.8 x 10⁴ in CH₂Cl₂). For each cation-crown system the measurements were carried out at five different picrate concentrations, using picrate:crown ratios of 1:1, 4:1, 7:1, 10:1 and 15:1.

BLM conductance measurements. BLM was formed on a hole (0.15 mm diameter) of a polystyrene chamber (Warner Instruments, Hamden, CT) on the interface of two solutions, cis and trans. The BLM was prepared from the mixture of lipids dioleoyl-glycero-phosphatidylcholine and dioleoyl-glycero-phosphoethanolamine at the molar ratio of 1:1 in n-decane (20 mg/ml). The cis/trans solutions for the measurement of the Na⁺/Cl⁻ BLM permeability ratio were (in mmol/l) 50/250 (or 250/50) NaCl and for the K⁺/Na⁺ permeability...
250/250 KCl/NaCl. The solutions were buffered to pH 7.4 by 5/2.5 mmol/l HEPES/Tris. The *cis/trans* solutions for the measurement of the Ca$^{2+}$ and K$^{+}$ BLM permeability were (in mmol/l) 43.6/100 Ca(OH)$_2$/KOH. The solutions were buffered to pH 7.4 by 160 mmol/l HEPES. Poly(1) was added in the *cis* solution (1-1000 fmol/l), incubated for 20-30 min, then the BLM was broken and formed again and/or the BLM chamber was rinsed with ethanol, dry and BLM was formed. The BLM electrical current was measured by amplifier (Bilayer Clamp, BC-525D, Warner Instrument), filtered at 1 kHz and digitized at 4 kHz by DigiData 1200 (Axon Instruments), stored on PC computer by program FETCDEX (pCLAMP6). The polymer dissolved in DMSO was applied into the *cis* solution. The DMSO volume concentration in the *cis* solution (\leq0.1%) did not influence BLM current. All the voltages reported here refer to the *trans* side with the *cis* side grounded. To evaluate single channel current, the low pass filter of 250 Hz was used, giving error of single channel amplitude $\sim\pm 0.15$ pA and time resolution ~ 4 ms.
Scheme S1. synthesis of the monomer (1)

Table S1. Elemental analysis of (1) and poly(1).

<table>
<thead>
<tr>
<th></th>
<th>C%</th>
<th>H%</th>
<th>O%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated</td>
<td>54.53</td>
<td>7.97</td>
<td>37.49</td>
</tr>
<tr>
<td>Measured</td>
<td>53.56</td>
<td>7.85</td>
<td>38.32</td>
</tr>
<tr>
<td>Poly(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured</td>
<td>53.56</td>
<td>7.91</td>
<td>36.93</td>
</tr>
</tbody>
</table>
Figure S1. 1H NMR of (1) (400 MHz, (CDCl$_3$, room temperature))

Figure S2. 13C NMR of (1) (400 MHz, (CDCl$_3$, room temperature))
Figure S3. 13C NMR of Poly(1) ((400 MHz, (CD$_3$)$_2$CO, room temperature))
Figure S4. A variation of Na\(^+\) current induced by poly(1) incorporated in BLM; 250/50 mmol/l NaCl cis / trans solutions. Voltage 0 mV. The lines on the right mark the closed state of the channels.
Figure S5. A variation of Na$^+$ single channel currents induced by poly(1) incorporated in BLM; 250/50 mmol/l NaCl cis / trans solutions. Voltage 0 mV. $E_{rev} = 30$ mV. Conductance ~20 pS (top trace) and ~233 pS (bottom trace). The lines on the right mark the closed state of the channels.
Figure S6. Examples of the lowest Na\(^+\) single channel currents induced by poly(1) incorporated in BLM; 250/50 mmol/l NaCl cis / trans solutions. Voltage 0 mV. \(E_{rev} = 30\) mV. Conductance ~13 pS (top trace) and ~53 pS (lower traces). The lines on the right mark the closed state of the channels.
Figure S7. Ca$^{2+}$ single channel current induced by poly(1) incorporated in BLM; 43.6/100 mmol/l Ca(OH)$_2$/KOH cis / trans solutions. Voltage 0 mV. The lines on the right mark the closed state of the channels.
Figure S8. Ca\(^{2+}\) and K\(^{+}\) single channel currents induced by poly(1) incorporated in BLM at the given voltages; 43.6/100 mmol/l Ca(OH)\(_2\)/KOH cis / trans solutions. Ca\(^{2+}\) current are observed at -60 and -20 mV. K\(^{+}\) current are observed at +20 and +60 mV. The lines on the right mark the closed state of the channels.
Figure S9. Cation over anion selectivity. Single channel IV profiles; poly(1) 25fmol/l; 50/250 mmol/l NaCl cis / trans solutions. The conductance g, the reversal potential E_{rev}, and the \(\text{Na}^+ / \text{Cl}^- \) selectivity ratio $P_{\text{Na}^+ / \text{Cl}^-}$ were: (○) 161 pS, -32 mV, 11.2/1. (Δ) 587 pS, -30 mV, 8.6/1. (●) 7.7 nS, -27 mV, 6.3/1 (▲). 47 nS, -20 mV, 3.5/1. \(\text{K}^+ / \text{Na}^+ \) selectivity. 250/250 mmol/l KCl/NaCl cis/trans solutions: $g=8.0$ nS, $E_{rev}=1.5$ mV, $P_{\text{Na}^+ / \text{K}^+}=1$ (▼).