Supporting Information

Novel Pd based catalyst for the removal of organic and emerging contaminants

Mallikarjuna N. Nadagouda[a*], Ishan Desai[b], Carlo Cruz[a], Duck J. Yang[c]

[a*] The U.S. Environmental Protection Agency, ORD, NRMRL, WSWRD, 26 W. Martin Luther King
Dr. Cincinnati, Ohio 45268
Phone: 01-513-569-7232 E-mail: Nadagouda.mallikarjuna@epa.gov

[b] Environmental and Water Resources Engineering Division, Zachry
Department of Civil Engineering, Texas A&M University, College Station, TX 77843, United States

[c] Department of Chemistry, The University of Texas at Dallas
800 W Campbell, BE26, Richardson TX 75080. Phone: 972-883-6681
Figure S1. The XRD pattern of control cellulose sample, coated with Polypyrrole. Red line- 2.882 M, blue line-1.441 M, and black line-0.2882 M of pyrrole used for the reaction.
Figure S2. The decoration of (a-b) Au nanoparticles on polypyrrole coated cellulose fibers, prepared using low concentration of pyrrole (0.2882 M)
Figure S3. The decoration of (a-b) Au nanoparticles on polypyrrole-coated cellulose fibers, prepared using a medium concentration of pyrrole (1.441 M).
Figure S4. SEM image of self-assembled Pd nanoparticles on cellulose nanofibers, prepared using a medium concentration of pyrrole (5 mL).

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C K</td>
<td>51.59</td>
<td>67.62</td>
</tr>
<tr>
<td>N K</td>
<td>10.61</td>
<td>11.92</td>
</tr>
<tr>
<td>O K</td>
<td>13.15</td>
<td>12.93</td>
</tr>
<tr>
<td>Na K</td>
<td>2.40</td>
<td>1.64</td>
</tr>
<tr>
<td>S K</td>
<td>0.23</td>
<td>0.11</td>
</tr>
<tr>
<td>Cl K</td>
<td>8.87</td>
<td>3.94</td>
</tr>
<tr>
<td>Cu K</td>
<td>0.16</td>
<td>0.04</td>
</tr>
<tr>
<td>Pd L</td>
<td>11.10</td>
<td>1.64</td>
</tr>
<tr>
<td>Au L</td>
<td>1.89</td>
<td>0.15</td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Table S1. EDS analysis of self-assembled Pd nanoparticles on cellulose nanofibers, prepared using a medium concentration of pyrrole (5 mL).
Figure S5. SEM image of self-assembled Pt nanoparticles on cellulose nanofibers, prepared using a high concentration of pyrrole (10 mL).

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
<th>Compd%</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl K</td>
<td>51.07</td>
<td>70.41</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Cu K</td>
<td>0.79</td>
<td>0.61</td>
<td>0.99</td>
<td>CuO</td>
</tr>
<tr>
<td>Pt L</td>
<td>17.28</td>
<td>4.33</td>
<td>20.12</td>
<td>PtO2</td>
</tr>
<tr>
<td>Au L</td>
<td>24.80</td>
<td>6.15</td>
<td>27.82</td>
<td>Au2O3</td>
</tr>
<tr>
<td>O</td>
<td>6.06</td>
<td>18.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S2. EDS analysis of self-assembled Pt nanoparticles on cellulose nanofibers, prepared using a high concentration of pyrrole (10 mL).
Figure S6. The decoration of Fe nanostructures on cellulose nanofibers, prepared using (a) 0.2882 M, (b) 1.441 M, and (c-d) 2.882 M of pyrrole.
<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
<th>Compd%</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al K</td>
<td>0.33</td>
<td>0.44</td>
<td>0.62</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Cl K</td>
<td>16.01</td>
<td>16.28</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Fe K</td>
<td>54.14</td>
<td>34.94</td>
<td>73.53</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>Au L</td>
<td>8.78</td>
<td>1.61</td>
<td>9.85</td>
<td>Au2O3</td>
</tr>
<tr>
<td>O</td>
<td>20.75</td>
<td>46.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S3. EDS analysis of self-assembled Fe nanoparticles on cellulose nanofibers, prepared using a high concentration of pyrrole (10 mL).
Figure S7. XRD pattern of Au nanostructures on polypyrrole-coated cellulose fibers prepared using (a) 0.2882 M, (b) 5, and (c) 2.882 M of pyrrole.
Figure S8. XRD patterns of Pd nanostructures on polypyrrole-coated cellulose fibers prepared using (a) 0.2882 M, (b) 1.441 M, and (c) 2.882 M of pyrrole.
Figure S9. XRD pattern of Pt nanostructures on polypyrrole-coated cellulose fibers prepared using (a) 0.2882 M, (b) 5, and (c) 2.882 M of pyrrole.
Figure S10. XRD patterns of iron nanoparticles formed on polypyrrole-coated cellulose fibers
Figure S11. SEM image of autocatalytic reduced Pd on 5 ml polypyrrole coated after cellulose fibers after microwave ignition for 1 minute.
Table S4. BET surface area of microwave ignited pre-selected morphology PdO$_2$

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single point surface area at P/Po = 0.299210665</td>
<td>59.6067 m2/g</td>
</tr>
<tr>
<td>BET Surface Area</td>
<td>60.6141 m2/g</td>
</tr>
<tr>
<td>Langmuir Surface Area</td>
<td>101.3300 m2/g</td>
</tr>
<tr>
<td>t-Plot Micropore Area</td>
<td>4.5622 m2/g</td>
</tr>
<tr>
<td>t-Plot External Surface Area</td>
<td>56.0518 m2/g</td>
</tr>
<tr>
<td>BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter</td>
<td>52.0934 m2/g</td>
</tr>
<tr>
<td>BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter</td>
<td>64.8865 m2/g</td>
</tr>
<tr>
<td>Single point adsorption total pore volume of pores less than 2330.929 Å diameter at P/Po = 0.991644095</td>
<td>0.112058 cm3/g</td>
</tr>
<tr>
<td>t-Plot micropore volume</td>
<td>0.002351 cm3/g</td>
</tr>
<tr>
<td>BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter</td>
<td>0.107117 cm3/g</td>
</tr>
<tr>
<td>BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter</td>
<td>0.108777 cm3/g</td>
</tr>
<tr>
<td>Adsorption average pore width (4V/A by BET)</td>
<td>73.9483 Å</td>
</tr>
<tr>
<td>BJH Adsorption average pore diameter (4V/A)</td>
<td>82.250 Å</td>
</tr>
<tr>
<td>BJH Desorption average pore diameter (4V/A)</td>
<td>67.057 Å</td>
</tr>
</tbody>
</table>