Supporting Information

Ligand-free coupling of phenols and alcohols with aryl halides by a recyclable heterogeneous copper catalyst

Man Wang, Bizhen Yuan, Tongmei Ma, Huanfeng Jiang and Yingwei Li*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.

E-mail: liyw@scut.edu.cn

Table of Contents

General information S-2
Experimental section S-2
Spectra data for the products S-6
1H NMR and 13C NMR spectra of products S-11
1. General Information

Chemicals were purchased from commercial sources. All solvents were analytical grade and distilled prior to use.

1H NMR and 13C NMR data were obtained on Bruker Avance III 400 spectrometer using CDCl$_3$ as solvent and tetramethylsilane (TMS) as an internal standard. Mass spectra were recorded on a GC-MS spectrometer (Shimadzu GCMS-QP5050A equipped with a 0.25 mm × 30 m DB-WAX capillary column). Powder X-ray diffraction patterns of the samples were obtained on a Rigaku diffractometer (D/MAX-IIIA, 3 kW) using Cu K$_\alpha$ radiation (40 kV, 30 mA, $\lambda = 0.1543$ nm). XPS data were obtained on Axis Ultra DLD using Mono Al K$_\alpha$ (1486.6eV, 10mA×15KV) as x-ray source. Atomic absorption spectroscopy (AAS) was obtained on a HITACHI Z-2300 instrument.

2. Experimental Section

2.1 Synthesis of MOF-253S1,S2

MOF-253 was prepared from hydrothermal reaction of AlCl$_3$·6H$_2$O (151 mg, 0.625 mmol), 2,2'-bipyridine-5,5'-dicarboxylic acid (153 mg, 0.625 mmol), and 10 mL N,N'-dimethylformamide (DMF) at 120 °C for 24 h. The resulting white microcrystalline powder was then filtered and washed with DMF. The solid was washed with methanol via soxhlet extraction for 24 h, and then was collected by filtration and finally dried at 200 °C under vacuum for 12 h.

2.2 Synthesis of MOF-253·0.5CuI

MOF-253·CuI was prepared by addition of MOF-253 (143.5 mg) to a solution of CuI
(57.2 mg, 0.3 mmol) in acetonitrile (5 mL) at 65 °C for 24 h. After cooling to room temperature, the resulting solid was soaked in 15 mL of acetonitrile. After 24 h, the supernatant was decanted and replaced with fresh acetonitrile. The exchanging process was repeated two times, after which the powder was filtered and heated at 150 °C for 12 h under vacuum. The molar ratio of CuI to bpy in MOF-253 was ca. 0.5, as measured by elemental analysis. Calcd for C_{12}H_{7}AlCu_{0.5}I_{0.5}N_{2}O_{5}: C, 37.79; H, 1.85; Al, 7.07; Cu, 8.33; N, 7.34. Found: C, 37.57; H, 1.94; Al, 7.11; Cu, 8.26; N, 7.46.

2.3 General procedure for coupling of aryl iodides/bromides with phenols

Aryl halide (0.4 mmol), phenol (0.6 mmol), MOF-253·0.5CuI (0.08 mmol, 20 mol%), and Cs_{2}CO_{3} (0.8 mmol) were added to a Schlenk tube under a nitrogen atmosphere at room temperature. The tube was sealed and the mixture was stirred at the desired temperature. After cooling to room temperature, the solid catalyst was isolated from the solution by filtration and washed with ethyl acetate. The solution was filtered through a short plug of silica gel, and then washed with copious quantities of ethyl acetate. The combined organic phase was concentrated under vacuum. The crude was purified by silica gel chromatography using petroleum ether/ethyl acetate as eluent to afford the desired product.

2.4 General procedure for coupling of alcohols with aryl iodides

Aryl iodide (0.4 mmol), alcohol (2 mmol), MOF-253·0.5CuI (0.08 mmol, 20 mol%), Cs_{2}CO_{3} (0.8 mmol), and DMSO (2 mL) were added to a Schlenk tube under a nitrogen atmosphere at room temperature. The tube was sealed and the mixture was stirred at the desired temperature. After cooling to room temperature, the solid catalyst was isolated from the solution.
by filtration and washed with ethyl acetate. The solution was filtered through a short plug of silica gel, and then washed with copious quantities of ethyl acetate. The combined organic phase was concentrated under vacuum. The crude was purified by silica gel chromatography using petroleum ether/ethyl acetate as eluent to afford the desired product.

2.5 Recycling of the MOF-253·0.5CuI catalyst

The recyclability of the MOF-253·0.5CuI catalyst was tested for reaction of iodobenzene with phenol maintaining the same reaction conditions as described above, except using the recovered catalyst. The results of three runs are presented in Table S1. Each time, the reaction mixture was allowed to settle down at the end of reaction and the supernatant liquid was decanted. The solid was thoroughly washed with ethyl acetate, dried, and then reused as catalyst in the next run.

2.6 Metal leaching test of MOF-253·0.5CuI

To study the leaching of Cu during the reaction, after reaction, the mixture was hot filtrated under vacuum. The solid was washed with DMSO, and the liquid phase was analyzed by AAS.

References

Table S1. Reusability of the MOF-253·0.5CuI catalyst

<table>
<thead>
<tr>
<th>Use</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (%)<sup>b</sup></td>
<td>99</td>
<td>96</td>
<td>97</td>
</tr>
</tbody>
</table>

^a Reaction conditions: iodobenzene (0.4 mmol), phenol (0.6 mmol), Cs₂CO₃ (0.8 mmol), MOF-253·0.5CuI (20 mol%), DMSO (2 mL), 80 °C, 24 h. ^b Determined by GC-MS.

Figure S1. Powder XRD patterns for MOF-253 (a), fresh MOF-253·0.5CuI (b), and reused MOF-253·0.5CuI (c).
3. Spectra Data for the Product

4-methyl-4'-methoxy-diphenylether (3a)

\[\delta = 7.13 \text{ (d, } J = 8.4, 2 \text{ H), 6.98-7.00 (m, 2 H), 6.89-6.91(m, 4 H), 3.82 (s, 3 H), 2.34 (s, 3 H).} \]

\[^{13} \text{C NMR (100 MHz, CDCl}_{3}^{3}: \delta = 156.2, 155.7, 150.8, 132.0, 130.1, 120.4, 117.8, 114.8, 55.6, 20.7.} \]

Diphenylether (3b)

\[\delta = 7.37 \text{ (t, } J = 7.8, 4 \text{ H), 7.13 \text{ (t, } J = 7.4, 2 \text{ H), 7.05 \text{ (d, } J = 8.4, 4 \text{ H).} \]

3-methoxy-diphenylether (3c)

\[\delta = 7.31-7.26 \text{ (m, 2 H), 7.02 \text{ (t, } J = 7.4, 1 \text{ H), 6.98-6.95 (m, 2 H), 6.94 (d, } J = 8.8, 2 \text{ H), 6.87 (d, } J = 8.6, 2 \text{ H), 3.78 (s, 3 H).} \]

4-nitro-diphenylether (3d)

\[\delta = 8.19 \text{ (d, } J = 8.0, 2 \text{ H), 7.43 \text{ (t, } J = 8.0, 2 \text{ H), 7.26 \text{ (t, } J = 7.4, 1 \text{ H), 7.09 \text{ (d, } J = 8.0, 2 \text{ H), 7.01 \text{ (d, } J = 8.0, 2 \text{ H).} \]

Electronic Supplementary Material (ESI) for RSC Advances

This journal is © The Royal Society of Chemistry 2012

2-Methyl-diphenylether (3e)

1H NMR (400 MHz, CDCl₃): $\delta = 7.22$ (t, $J = 7.4$, 2 H), 7.23 (d, $J = 7.6$, 1 H), 7.15 (t, $J = 7.6$, 1 H), 7.07-7.00 (m, 2 H), 6.89 (d, $J = 7.4$, 3 H), 2.23 (s, 3 H). 13C NMR (100 MHz, CDCl₃): $\delta = 158.0, 154.5, 131.5, 130.1, 129.7, 127.2, 124.1, 122.4, 119.9, 117.3, 16.2$.

GC-MS (EI): found: 184(M⁺), calcd for C₁₃H₁₂O (M⁺): 184.23.

3-Methyl-diphenylether (3f)

1H NMR (400 MHz, CDCl₃): $\delta = 7.33-7.29$(m, 2H), 7.19(t, $J = 7.8$ Hz, 1H), 7.07 (t, $J = 7.4$ Hz, 1H), 7.00-6.98 (m, 2H), 6.91 (d, $J = 8.0$ Hz, 1H), 6.81(t, $J = 8.0$Hz, 2H), 2.31(s, 3H). 13C NMR (100 MHz, CDCl₃): $\delta = 157.5, 157.3, 140.0, 129.8, 129.5, 124.2, 123.2, 119.7, 118.9, 116.0, 21.5$. GC-MS (EI): found: 184(M⁺), calcd for C₁₃H₁₂O (M⁺): 184.23.

4-Methyl-diphenylether (3g)

1H NMR (400 MHz, CDCl₃): $\delta = 7.39$(t, $J = 8.0$ Hz, 2H), 7.22 (d, $J = 8.0$ Hz, 2H), 7.14 (t, $J = 7.6$ Hz, 1H), 7.07 (d, $J = 8.0$ Hz, 2H), 7.01 (d, $J = 8.0$ Hz, 2H), 2.42 (s, 3H). 13C NMR (100 MHz, CDCl₃): $\delta = 157.9, 154.8, 132.9, 130.3, 129.7, 122.8, 119.2,118.4, 20.8$.

GC-MS (EI): found: 184(M⁺), calcd for C₁₃H₁₂O (M⁺): 184.23.

1-Naphthyl phenylether (3h)

1H NMR (400 MHz, CDCl₃): $\delta = 8.29$ (d, $J = 6.8$, 1 H), 7.93 (d, $J=7.8$, 1 H), 7.68 (d, $J = 8.2$, 1 H), 7.61-7.51 (m, 2 H), 7.47-7.36 (m, 3 H), 7.18 (d, $J = 7.4$, 1 H), 7.12
(d, J = 8.0, 2 H), 7.02 (d, J = 7.8, 1 H). 13C NMR (100 MHz, CDCl$_3$): δ = 157.9, 153.1, 135.0, 129.9, 127.9, 126.9, 126.6, 126.0, 125.9, 123.4, 123.2, 122.2, 118.6, 113.6. GC-MS (EI): found: 220 (M$^+$), calcd for C$_{16}$H$_{12}$O (M$^+$): 220.27.

4-Chloro-diphenylether (3i)

1H NMR (400 MHz, CDCl$_3$): δ = 7.37 (t, J = 7.8, 2 H), 7.31 (d, J = 8.6, 2 H), 7.15 (t, J = 7.4, 1 H), 7.03 (d, J = 8.6, 2 H), 6.97 (d, J = 8.6, 2 H). 13C NMR (100 MHz, CDCl$_3$): δ = 156.9, 156.0, 129.9, 129.8, 128.2, 123.7, 120.1, 119.0. GC-MS (EI): found: 204 (M$^+$), calcd for C$_{12}$H$_9$OCl (M$^+$): 204.65.

4, 4'-Dimethyl-diphenylether (3j)

1H NMR (400 MHz, CDCl$_3$): δ = 7.20 (d, J = 8.2, 4 H), 6.98 (d, J = 8.6, 4 H), 2.41 (s, 6 H). 13C NMR (100 MHz, CDCl$_3$): δ = 155.4, 132.5, 130.2, 118.7, 20.7. GC-MS (EI): found: 198(M$^+$), calcd for C$_{14}$H$_{14}$O (M$^+$): 198.26.

Methoxybenzene (3k)

1H NMR (400 MHz, CDCl$_3$): δ = 7.50 (t, J = 8.6, 2 H), 7.19-7.12 (m, 3 H), 3.95 (s, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ = 159.9, 129.7, 120.8, 114.1, 55.1. GC-MS (EI): found: 108(M$^+$), calcd for C$_7$H$_8$O (M$^+$): 108.14.

Anisole (3l)

1H NMR (400 MHz, CDCl$_3$): δ = 7.16 (t, J = 8.4, 2H), 6.79 (t, J = 8.6, 3H),
3.89-3.87 (m, 2H). 1.29 (t, \(J = 8.0, 3 \text{H} \)). \(\delta = 159.1, 129.5, 120.6, 114.6, 63.3, 14.9 \). GC-MS (EI): found: 122(M'), calcd for C\(_8\)H\(_{10}\)O (M'): 122.16.

![n-butyl phenyl ether (3m)]

\(^1\text{H NMR (400 MHz, CDCl}_3): \delta = 7.29-7.23 \text{ (m, 2 H), 6.94-6.88 (m, 3 H), 3.95 (t, } J = 8.6, 2 \text{ H), 1.81-1.71 (m, 2 H), 1.54-1.44 (m, 2 H), 0.97 (t, } J = 7.4, 3 \text{ H).} \)

\(^{13}\text{C NMR (100 MHz, CDCl}_3): \delta = 159.2, 129.4, 120.5, 114.5, 67.6, 31.4, 19.3, 13.9 \). GC-MS (EI): found: 150 (M'), calcd for C\(_{10}\)H\(_{14}\)O (M'): 150.22.

![n-octyl phenyl ether (3n)]

\(^1\text{H NMR (400 MHz, CDCl}_3): \delta = 7.29-7.25 \text{ (m, 2 H), 6.94-6.88 (m, 3 H), 3.95 (t, } J = 7.4, 2 \text{ H), 1.81-1.74 (m, 2 H), 1.47-1.26 (m, 10 H), 0.89 (t, } J = 8.0, 3 \text{ H).} \)

\(^{13}\text{C NMR (100 MHz, CDCl}_3): \delta = 159.2, 129.4, 120.5, 114.5, 67.9, 31.9, 29.4, 29.3, 29.3, 26.1, 22.7, 14.1 \). GC-MS (EI): found: 206(M+), calcd for C\(_{14}\)H\(_{22}\)O (M+): 206.32.

![4-methyl phenetole (3o)]

\(^1\text{H NMR (400 MHz, CDCl}_3): \delta = 7.08 \text{ (d, } J = 8.4, 2 \text{ H), 6.81 (d, } J = 8.6, 2 \text{ H), 4.04-3.99 (m, 2 H), 2.29 (s, 3 H), 1.41 (t, } J = 8.0, 3 \text{ H).} \)

\(^{13}\text{C NMR (100 MHz, CDCl}_3): \delta = 156.8, 130.0, 129.9, 114.3, 63.4, 20.5, 14.9 \). GC-MS (EI): found: 136 (M'), calcd for C\(_9\)H\(_{12}\)O (M'): 136.19.

![4-nitrophenetole (3p)]

\(^1\text{H NMR (400 MHz, CDCl}_3): \delta = 8.21-8.18 \text{ (m, 2 H), 6.96-6.92 (m, 2 H),} \)

S-9
4.13 (m, J = 7.0, 2 H), 1.47 (t, J = 7.0, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ = 164.0, 141.4, 125.9, 114.4, 64.4, 14.6. GC-MS (EI): found: 167 (M+), calcd for C$_8$H$_9$NO$_3$ (M$^+$):167.06.

1-(cyclopentyloxy)benzene (3q)

1H NMR (400 MHz, CDCl$_3$) δ =7.31-7.27 (m, 2 H), 6.94 (t, J = 8.0, 3 H), 4.29-4.24 (m, 1 H), 2.05-2.00(m, 2 H), 1.85-1.82(m, 2 H), 1.54-1.44 (m, 4 H). 13C NMR (100 MHz, CDCl$_3$): δ = 157.8, 129.4, 120.5, 116.1, 75.4, 31.9, 23.8. GC-MS (EI): found: 162(M+), calcd for C$_{11}$H$_{14}$O (M$^+$): 162.23.

1-(Phenoxymethyl)benzene (3r)

1H NMR (400 MHz, CDCl$_3$) δ =7.47 (d, J=7.2, 2 H), 7.41-7.38 (m, 2 H), 7.36 (d, J=7.2, 1 H), 7.32-7.29 (m, 2 H), 7.01-6.96 (m, 3 H), 5.08 (s, 2 H). 13C NMR (100 MHz, CDCl$_3$): δ = 158.8, 137.1, 129.5, 128.6, 128.0, 127.5, 121.0, 114.9, 69.9. GC-MS (EI): found: 184(M+), calcd for C$_{13}$H$_{12}$O (M$^+$): 184.23.

1-(Phenoxyethyl)benzene (3s)

1H NMR (400 MHz, CDCl$_3$) δ =7.26-7.16 (m, 7H), 6.87-6.81 (m, 3H), 4.10 (t, J=7.6, 2H), 3.02(t, J = 8.0, 2 H). 13C NMR (100 MHz, CDCl$_3$): δ = 157.8, 137.2, 128.4, 128.0, 127.5, 125.5, 119.7, 113.5, 67.5, 34.8. GC-MS (EI): found: 198 (M$^+$), calcd for C$_{14}$H$_{14}$O (M$^+$): 198.26.
4. 1H NMR and 13C NMR Spectra of products