Supplementary Information

Reversible Encapsulation of a Nitrate Guest via Hydrogen bonded Self-Assembled Capsule Formation by Flexible Tripodal Receptor in Polar Solvent through Dynamic Self-Assembly

Ashutosh S. Singh and Shih-Sheng Sun*
Institute of Chemistry, Academia Sinica, 115 Nankang, Taipei, Taiwan, Republic of China
E-mail: sssun@chem.sinica.edu.tw

Fig. S1-S47 Spectral characterization of receptors and anion complexes.
Fig. S48-S56 HRESI mass spectra of nitrate complexes 1a-7a, 1b and 6b.
Fig. S57-S60 HRESI mass spectra of self-assemble capsule (1') formation.
Fig. S61-S64 HRESI mass spectra of self-assemble capsule (5') formation.
Fig. S65-S67 HRESI mass spectra of self-assemble capsule (6') formation.
Fig. S68 Titration spectra of mixture of nitrate complex 1a and 1b in DMSO-d$_6$ with varying amount of CDCl$_3$.
Fig. S69-S71 1H NMR titration of DMSO-d$_6$ solution of receptor 1' with CDCl$_3$, acetone-d$_6$ and CD$_3$NO$_2$ respectively.
Fig. S72-S74 1H NMR titration of DMSO-d$_6$ solution of nitrate complex 1b with CDCl$_3$, acetone-d$_6$ and CD$_3$NO$_2$ respectively.
Fig. S75-S76 1H NMR titration of DMSO-d$_6$ solution of receptor 5 with acetone-d$_6$ and CD$_3$NO$_2$ respectively.
Fig. S77-S79 1H NMR titration of DMSO-d$_6$ solution of nitrate complex 5a with CDCl$_3$, acetone-d$_6$ and CD$_3$NO$_2$ respectively.
Fig. S80 Titration spectra of mixture of nitrate complex 6a and 6b in DMSO-d$_6$ with varying amount of CDCl$_3$.
Fig. S81 1H NMR titration of DMSO-d$_6$ solution of receptor 6' with CD$_3$NO$_2$.
Fig. S82-S84 1H NMR titration of DMSO-d$_6$ solution of nitrate complex 6b with CDCl$_3$, acetone-d$_6$ and CD$_3$NO$_2$ respectively.
Fig. S85 Concentration dependent 1H NMR spectra of receptor 5 in CDCl$_3$.
Fig. S86-S93 Titration spectra of perchlorate complexes of the corresponding receptors 1-7 and 1’ with TBANO$_3$ in acetone-d$_6$.
Fig. S94 Spectroscopic curves of titration of perchlorate complexes with TBANO$_3$ in acetone-d$_6$.
Fig. S95 pH dependent reversible binding of nitrate anion by receptor 1′.

Table S1 Crystallographic data and structure refinements for 1a.

Table S2 Hydrogen bonding distances and Bond angles in complex 6a.

Fig. S1 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of receptor 1.
Fig. S2 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of receptor 1.
Fig. S3 1H NMR (400 MHz, DMSO-d_6, 20 $^\circ$C) spectrum of a mixture of complexes 1a (peaks represented by red circles) and 1b (peaks represented by green circles) obtained by treating receptor 1 with nitric acid in CHCl$_3$/MeOH (v/v = 1/1). The circle in blue color represents water peak from DMSO-d_6.
Fig. S4 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 1a.
Fig. S5 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 1a.
Fig. S6 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 1b.
Fig. S7 13C NMR (100 MHz, DMSO-d_6, 20 ºC) spectrum of nitrate complex 1b.
Fig. S8 The COSY spectrum of nitrate complex 1b in DMSO-d_6.
Fig. S9 The HSQC spectrum of nitrate complex 1b in DMSO-\textit{d}$_6$.
Fig. S10 The HMBC spectrum of nitrate complex 1b in DMSO-d_6.

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
Fig. S11 The ROESY spectrum of nitrate complex 1b in DMSO-d_6.

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
Fig. S12 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of receptor 1'.
Fig. S13 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of receptor 1'.
Fig. S14 1H NMR (400 MHz, CDCl$_3$, 20 °C) spectrum of receptor 1'.
Fig. S15 13C NMR (100 MHz, CDCl$_3$, 20 °C) spectrum of receptor 1’.
Fig. S16 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of receptor 2.
Fig. S17 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of receptor 2.
Fig. S18 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 2a.
Fig. S19 13C NMR (100 MHz, DMSO-$_d_6$, 20 °C) spectrum of nitrate complex 2a.
Fig. S20 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of receptor 3.
Fig. S21 13C NMR (100 MHz, DMSO-d_6, 20°C) spectrum of receptor 3.
Fig. S22 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 3a.
Fig. S23 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 3a.
Fig. S24 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of receptor 4.
Fig. S25 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of receptor 4.
Fig. S26 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 4a.
Fig. S27 13C NMR (100 MHz, DMSO-d_6, 20 $^\circ$C) spectrum of nitrate complex 4a.
Fig. S28 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of receptor 5.
Fig. S29 13C NMR (100 MHz, DMSO-d_6, 20 ºC) spectrum of receptor 5.
Fig. S30 1H NMR (400 MHz, CDCl$_3$, 20 ºC) spectrum of receptor 5.
Fig. S31 13C NMR (100 MHz, CDCl$_3$, 20 ºC) spectrum of receptor 5.
Fig. S32 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 5a.
Fig. S33 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 5a.
Fig. S34 1H NMR (400 MHz, DMSO-d_6, 20 ºC) spectrum of receptor 6.
Fig. S35 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of receptor 6.
Fig. S36 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 6a.
Fig. S37 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 6a.
Fig. S38 1H NMR (400 MHz, DMSO-d$_6$, 20 ºC) spectrum of receptor 6'.
Fig. S39 13C NMR (100 MHz, DMSO-d_6, 20°C) spectrum of receptor 6'.

Receptor 6'
Fig. S40 1H NMR (400 MHz, CDCl$_3$, 20 °C) spectrum of receptor 6'.
Fig. S41 13C NMR (100 MHz, CDCl$_3$, 20 °C) spectrum of receptor 6'.
Fig. S42 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 6b.
Fig. S43 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 6b.
Fig. S44 1H NMR (400 MHz, DMSO-d_6, 20°C) spectrum of receptor 7.
Fig. S45 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of receptor 7.
Fig. S46 1H NMR (400 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 7a.
Fig. S47 13C NMR (100 MHz, DMSO-d_6, 20 °C) spectrum of nitrate complex 7a.
Fig. S48 HRESI mass spectrum of complex 1a.

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 1000.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
9 formulae/ions evaluated with 1 results within limits (up to 50 closest results for each mass)

Elements Used:
C: 0-1000 H: 0-4000 N: 5-5 O: 12-12

1224.428-192.27 (2.056)

Minimum: 5.0 10.0 -1.5
Maximum: 1000.0

Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
886.3306 886.3259 0.7 0.0 27.5 62.0 0.0 C48 H40 N4 O12

Complex 1a

Chemical Formula: C48H40N4O12
Molecular Weight: 887.9290
For [M-H]-: 886.9210
Theoretical value for [M-H]-: 886.3299 (100%)
Fig. S49 HRESI mass spectrum of complex 1b.
Fig. S50 HRESI mass spectrum of complex 2a.
Fig. S51 HRESI mass spectrum of complex 3a.

Elemental Composition Report

Single Mass Analysis
Tolerance = 10.0 PPM / DBE: min = -1.5, max = 1000.0
Element prediction: Off
Number of isotopic peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron ions
9 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

Elements Used:
C: 0-1000 H: 0-4000 N: 5-5 O: 12-12
CA-65-1
0513_GK-66-1 7 (0.703)

806.3290
887.3266
888.3240
889.3219
894.3292
971.3082
1000.3210
1050.2683
1083.3955

Mass Calculated

<table>
<thead>
<tr>
<th>Mass</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>886.3290</td>
<td>0.9 ppm</td>
</tr>
</tbody>
</table>

Chemical Formula: C_{48}H_{40}N_{5}O_{12}
Molecular Weight: 887.9290
For [M-H]⁻: 886.9210
Theoretical value for [M-H]⁻: 886.3299 (100%)
Fig. S52 HRESI mass spectrum of complex 4a.

Elemental Composition Report

Single Mass Analysis

Tolerance = 100.0 PPM / DBE: min = -1.5, max = 1000.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 2

Monotopic Mass, Even Electron Ions

18 formulae evaluated with 1 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-1000 H: 0-4000 N: 7-8 O: 15-15

C41H25N3O14

0.26 MCH 195.25 (2.002)

Complex 4a

Chemical Formula: C41H25N3O14

Molecular Weight: 932.8437

For [M-H]: 931.8358

Theoretical value for [M-H]: 931.2535 (100%)
Fig. S53 HRESI mass spectrum of complex 5a.

Elemental Composition Report

Single Mass Analysis
Tolerance = 10.0 PPM / DBE: min = -1.5, max = 1000.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ion
9 formula(s) evaluated with 1 results within limits (up to 50 closest results for each mass)

Elements Used
C: 0-1000 H: 0-4000 N: 8-8 O: 15-15

CX-66-2

0513_CX-66-2.0 (0.040) Cm (9-41)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>931.2542</td>
<td>931.2535</td>
<td>0.7</td>
<td>0.8</td>
<td>30.5</td>
<td>17.8</td>
<td>0.0</td>
<td>C45 H39 N8 O15</td>
</tr>
</tbody>
</table>

Chemical Formula: C_{45}H_{40}N_{8}O_{15}
Molecular Weight: 932.8437

For [M-H]^+ : 931.8358
Theoretical value for [M-H]^+ : 931.2535 (100%)
Fig. S54 HRESI mass spectrum of complex 6a.

Elemental Composition Report

Single Mass Analysis
Tolerance = 100.0 PPM / DBE: min = -1.5, max = 1000.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
9 formula(s) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-1000 H: 0-4000 N: 5-5 O: 9-9

CK-1948

0224_CK-1948_264 (3.418)

Minimum: 5.0 100.0 1600.0
Maximum: 100.0 1000.0

Mass Calc. Mass nDa PDB i-FIT i-FIT (Norm) Formula
638.3452 638.3452 0.1 0.1 57.5 54.0 0.0 C48 H48 N5 O9

Complex 6a

Chemical Formula: C48H48N5O9
Molecular Weight: 839.9308
For [M+H]+: 838.9228
Theoretical value for [M-H]-: 838.3452 (100%)
Fig. S5 HRESI mass spectrum of complex 6b.

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 1000.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, From Electron Ions
9 formula(s) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-1000 H: 0-4000 N: 0-8 O: 15-15

Complex 6b
Chemical Formula: C_{46}H_{46}N_{6}O_{15}
Molecular Weight: 974.9234
For [M-H]: 973.9155
Theoretical value for [M-H]: 973.3004 (100%)
Fig. S6. HRESI mass spectrum of complex 7a.

Elemental Composition Report

Single Mass Analysis

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 1000.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron ions

6 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-1000 H: 0-4000 N: 5-5 O: 9-9

CK-122-2

1118 CK-122-2 13 (1,327) Cm (13-1)

100

%

50 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850

0 749.3025 757.9260 761.5108 771.8665 774.0896 776.6578 785.8210 792.9924

796.2977 797.2967 798.3042 799.2914 800.0464 813.7084 821.5923 826.7084 834.2786 842.8303 848.4924

m/z

Minimum: 5.0 20.0 1000.0

Maximum: 1.5

Mass **Calc. Mass** **zm/z** **DBE** **i-FIT** **i-FIT (Nons)** **Formula**

796.2977 796.2963 -0.6 -0.9 27.5 35.4 0.0 C41 H42 N8 O9

Chemical Formula: C41H42N8O9

Molecular Weight: 797.8510

For [M-H]: 796.8431

Theoretical value for [M-H]: 796.2983 (100%)
Fig. S57 HRESI mass spectrum of the self-assembled capsule (1'2) recorded after dissolving nitrate complex 1b in a mixture solution of DMSO/CHCl₃ (1:1).
Elemental Composition Report

Single Mass Analysis
Tolerance = 10.0 PPM / DBE: min = -1.5, max = 1000.0
Element prediction: Off
Number of isotopic peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron ions
17 formula(s) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-1000 H: 0-4000 N: 1-14 O: 30-30 Na: 1-1

Chemical Formula for [M+Na]^+: C_{96}H_{90}N_{14}NaO_{30}
Molecular Weight: 1942.8074
Theoretical value for [M+Na]^+: 1942.5879 (100%)

Fig. S58 HRESI mass spectrum of the self-assembled capsule (1') recorded after dissolving receptor 1' in a mixture solution of DMSO/CHCl3 (1:1).
Fig. S59 HRESI mass spectrum of the self-assembled capsule (1') recorded by dissolving receptor 1' to a mixture solution of DMSO/acetone (1:1, v/v).
Fig. S60 HRESI mass spectrum of the self-assembled capsule (1') recorded by dissolving receptor 1 to a mixture solution of DMSO/CH$_3$NO$_2$ (1:1, v/v).

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
Fig. S61 HRESI mass spectrum of the self-assembled capsule (5) recorded after dissolving nitrate complex 5a in mixture solution of DMSO/CHCl₃ (1:1).

Elemental Composition Report

Single Mass Analysis

<table>
<thead>
<tr>
<th>Tolerance</th>
<th>50.0 PPM</th>
<th>DBE</th>
<th>min</th>
<th>-1.5</th>
<th>max</th>
<th>1000.0</th>
</tr>
</thead>
</table>

Element prediction: Off

Number of isotope peaks used for i-FIT: 2

Monoisotopic Mass, Even Electron ion

15 formula(s) evaluated with 1 results within limits (up to 50 closest results for each mass)

Elements Used

<table>
<thead>
<tr>
<th>C</th>
<th>0-1000</th>
<th>H</th>
<th>0-4000</th>
<th>N</th>
<th>14-14</th>
<th>O</th>
<th>24-24</th>
</tr>
</thead>
</table>

CX-19-28

0467_CX-19-28 11 (1.057) Cm (11-1)

<table>
<thead>
<tr>
<th>Minimum</th>
<th>5.0</th>
<th>20.0</th>
<th>1000.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>ppm</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Mona)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1739.5383</td>
<td>1739.5392</td>
<td>-0.9</td>
<td>-0.5</td>
<td>58.5</td>
<td>34.0</td>
<td>0.0</td>
<td>C₈₀H₇₈N₁₄O₂₄</td>
</tr>
</tbody>
</table>

Chemical Formula: C₈₀H₇₈N₁₄O₂₄

Molecular Weight: 1739.6617

Theoretical value for [M+H]+: 1739.5392 (100%)
Fig. S62. HRESI mass spectrum of the self-assembled capsule (5) recorded by dissolving receptor 5 to a mixture solution of DMSO/CHCl₃ (1:1, v/v).

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
Fig. S63 HRESI mass spectrum of the self-assembled capsule (5) recorded by dissolving receptor 5 to a mixture solution of DMSO/acetone-d₆ (1:1, v/v).

Elemental Composition Report

Single Mass Analysis

Tolerance = 40.0 PPM / DBE: min = -1.5, max = 1000.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ion:

10 formula(e) evaluated with 1 result within limits (all results up to 1000) for each mass

Elements Used:

C: 0-400 H: 0-1000 N: 14-14 O: 24-24 Na: 1-1

CX:183-4

0030 CX:183-4 24 (1.940)

Minimum:

Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula

1761.5193 1761.5211 -1.0 -1.0 58.5 12.6 0.0 C₉₀ H₇₈ N₁₄ O₂₄ Na

Self-assembled molecular capsule (5₂)

Chemical Formula: C₉₀H₇₈N₁₄O₂₄

Molecular Weight: 1739.6817

Theoretical value for [M+Na⁺]: 1761.5211 (100%)
Fig. S4. HRESI mass spectra of the self-assembled capsule (52) recorded by dissolving receptor 5 to a mixture solution of DMSO/CH3NO2 (1:1, v/v).
Fig. S65 HRESI mass spectrum of the self-assembled capsule (6b) recorded after dissolving the nitrate complex 6b in a mixture solution of DMSO/CHCl₃ (1:1).

Elemental Composition Report

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>m/e</th>
<th>PPM</th>
<th>DBE</th>
<th>mmHg</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1823.6337</td>
<td>1823.6331</td>
<td>0.6</td>
<td>0.3</td>
<td>58.5</td>
<td>17.4</td>
<td>0.0</td>
<td>C₉₀H₁₀₀N₁₄O₂₄</td>
<td></td>
</tr>
</tbody>
</table>

Minimum: 5.0 50.0 1000.0
Maximum: 17.4

Chemical Formula: C₉₀H₁₀₀N₁₄O₂₄
Molecular Weight: 1823.6212

Theoretical value for M⁺: 1823.6286 (100%)
Theoretical value for [M+H]⁺: 1824.6364 (100%)
Fig. S6. HRESI mass spectra of the self-assembled capsule (6') recorded by dissolving receptor 6' to a mixture solution of DMSO/acetone (1:1, v:v).
Fig. S67 HRESI mass spectra of the self-assembled capsule (6’2) recorded by dissolving receptor 6’ to a mixture solution of DMSO/CH$_3$NO$_2$ (1:1, v/v).
Fig. S68 1H NMR titration spectra of a mixture of nitrate complexes (in DMSO-d_6 with varying amount of CDCl$_3$) obtained after addition of nitric acid in aqueous methanol to a suspension of receptor 1 in CHCl$_3$. The star marks in green and red color represent the peaks for DMSO-d_6 (as solvent) and DMSO-d_6 (as internal reference, TMS in DMSO-d_6), respectively. The circles in green and red color represent water peaks from DMSO-d_6 (as solvent) and from DMSO-d_6 (as internal reference, TMS in DMSO-d_6), respectively. The triangles in red and blue color represent amide N-H peaks of nitrate complexes 1b and 1a, respectively. The circle in blue color represents peak for CDCl$_3$.

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
Fig. S69 1H NMR (400 MHz, 20 °C) titration spectra of receptor $1'$ (10.3 mM) in DMSO-d_6 with varying amount of CDCl$_3$ with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents peak for CDCl$_3$. The spectrum in red color was recorded after partial evaporation of CDCl$_3$ from the mixture solution, showing reversible capsule formation through dynamic self-assembly of receptor $1'$.
Fig. S70 1H NMR (400 MHz, 20 °C) titration spectra of receptor 1’ (10.3 mM) in DMSO-d_6 with varying amount of acetone-d_6 with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. Star marks in blue color represent the peaks for acetone-d_6. The spectrum in red color was recorded after partial evaporation of acetone-d_6 from the mixture solution, showing reversible capsule formation through dynamic self-assembly of receptor 1’.
Fig. S71 ¹H NMR (400 MHz, 20 °C) titration spectra of receptor 1’ (10.3 mM) in DMSO-­d₆ with varying amount of CD₃NO₂ with TMS (in DMSO-­d₆) as the internal reference. Green stars represent the peaks of DMSO-­d₆ used as solvent. Red stars represent the peaks of DMSO-­d₆ from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-­d₆ and from internal reference, respectively. A star mark in blue color represents peak for CD₃NO₂.
Fig. S72 1H NMR (400 MHz, 20 °C) titration spectra of nitrate complex 1b (10.3 mM) in DMSO-d_6 with varying amount of CDCl$_3$ with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents peak for CDCl$_3$. The spectrum in red color was recorded after partial evaporation of CDCl$_3$ from the mixture solution, showing reversible binding of nitrate anion by receptor 1'.
Fig. S73 1H NMR (400 MHz, 20 °C) titration spectra of nitrate complex 1b (10.3 mM) in DMSO-d_6 with varying amount of acetone-d_6 with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents the peak for acetone-d_6. The spectrum in red color was recorded after partial evaporation of acetone-d_6 from the mixture solution, showing reversible binding of nitrate anion by receptor $1'$.
Fig. S74 1H NMR (400 MHz, 20 °C) titration spectra of nitrate complex 1b (10.3 mM) in DMSO-d_6 with varying amount of CD$_3$NO$_2$ with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents the peak for CD$_3$NO$_2$.

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
Fig. S75 1H NMR (400 MHz, 20 °C) titration spectra of receptor 5 (10.3 mM) in DMSO-d_6 with varying amount of acetone-d_6 with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents the peak for acetone-d_6.
Fig. S76 1H NMR (400 MHz, 20 °C) titration spectra of receptor 5 (10.3 mM) in DMSO-d_6 with varying amount of CD$_3$NO$_2$ with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents the peak for CD$_3$NO$_2$.
Fig. S77 ¹H NMR (400 MHz, 20 °C) titration spectra of nitrate complex 5a (10.3 mM) in DMSO-­d₆ with varying amount of CDCl₃ with TMS (in DMSO-­d₆) as the internal reference. Green stars represent the peaks of DMSO-­d₆ used as solvent. Red stars represent the peaks of DMSO-­d₆ from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-­d₆ and from internal reference, respectively. A star mark in blue color represents the peak for CDCl₃. The spectrum in red color was recorded after partial evaporation of CDCl₃ from the mixture solution, showing reversible binding of nitrate anion by receptor 5.
Fig. S78 1H NMR (400 MHz, 20 °C) titration spectra of nitrate complex 5a (10.3 mM) in DMSO-d_6 with varying amount of acetone-d_6 with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents the peak for acetone-d_6. The spectrum in red color was recorded after partial evaporation of acetone-d_6 from the mixture solution, showing reversible binding of nitrate anion by receptor 5.
Fig. S79 1H NMR (400 MHz, 20 °C) titration spectra of nitrate complex 5a (10.3 mM) in DMSO-d_6 with varying amount of CD$_3$NO$_2$ with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents peak for CD$_3$NO$_2$.
Fig. S80 ¹H NMR titration spectra of mixture of nitrate complex (in DMSO-ç with varying amount of CDCl₃), obtained after addition of nitric acid in an aqueous methanol to the suspension of receptor 6 in CHCl₃. The star marks in green and red color represents peak corresponding to DMSO-ç (as solvent) and DMSO-ç (as internal reference, TMS in DMSO-ç), respectively. Circle in green color represents water peak from DMSO-ç (as solvent) and the same in red color represents water peak from DMSO-ç (as internal reference, TMS in DMSO-ç). A star mark in blue color represents peak for CDCl₃.
Fig. S81 1H NMR (400 MHz, 20 °C) titration spectra of receptor 6* (10.3 mM) in DMSO-d_6 with varying amount of CD$_3$NO$_2$ with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents the peak for CD$_3$NO$_2$.

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
Fig. S82 1H NMR (400 MHz, 20 °C) titration spectra of nitrate complex 6b (10.3 mM) in DMSO-d_6 with varying amount of CDCl$_3$ with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents the peak for CDCl$_3$. The spectrum in red color was recorded after partial evaporation of CDCl$_3$ from the mixture solution, showing reversible binding of nitrate anion by receptor 6•.
Fig. S83 1H NMR (400 MHz, 20 °C) titration spectra of nitrate complex 6b (10.3 mM) in DMSO-d_6 with varying amount of acetone-d_6 with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in green and red color represent the peaks for water from solvent DMSO-d_6 and from internal reference, respectively. A star mark in blue color represents peak for acetone-d_6. The spectrum in red color was recorded after partial evaporation of acetone-d_6 from the mixture solution, showing reversible binding of nitrate anion by receptor 6'.
Fig. S84 1H NMR (400 MHz, 20 °C) titration spectra of nitrate complex 6b (10.3 mM) in DMSO-d_6 with varying amount of CD$_3$NO$_2$ with TMS (in DMSO-d_6) as the internal reference. Green stars represent the peaks of DMSO-d_6 used as solvent. Red stars represent the peaks of DMSO-d_6 from the internal reference. Circles in red color represent the peaks for water from DMSO-d_6 (internal reference). A star mark in blue color represents the peak for CD$_3$NO$_2$.

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
Fig. S85 Concentration dependent 1H NMR of 5$_2$ in CDCl$_3$ showing the self-assembled capsule exists till 1×10^8 M concentration without formation of any side products.
Fig. S86 Partial 1H NMR titration spectra of perchlorate complex 1c (2.96×10^{-3} M) with tetrabutylammonium nitrate in acetone-d_6.

Fig. S87 Partial 1H NMR titration spectra of perchlorate complex 1’c (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-d_6.
Fig. S88 Partial 1H NMR titration spectra of perchlorate complex 2c (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-d_6.

Fig. S89 Partial 1H NMR titration spectra of perchlorate complex 3c (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-d_6.
Fig. S90 Partial 1H NMR titration spectra of perchlorate complex 4c (1.48 × 10^{-3} M) with tetrabutylammonium nitrate in acetone-d_6.

Fig. S91 Partial 1H NMR titration spectra of perchlorate complex 5c (1.48 × 10^{-3} M) with tetrabutylammonium nitrate in acetone-d_6.
Fig. S92 Partial 1H NMR titration spectra of perchlorate complex 6c (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-d_6.

Fig. S93 Partial 1H NMR titration spectra of perchlorate complex 7c (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-d_6.
Fig. S94 1H NMR titration curves of perchlorate complexes (1.48×10^{-3} M) with tetrabutylammonium nitrate in acetone-d_6.
pH dependent reversible binding of NO$_3$ anion by compound 1':

![Diagram showing pH dependent reversible binding of NO$_3$ anion by compound 1']

Fig. S95 1H NMR spectra (400 MHz, DMSO-d_6, 20 °C) of complex 1b (49 mM) showing proton-induced reversible binding of nitrate anion. (a) 1H NMR spectrum of complex 1b in DMSO-d_6. (b) After treating with 2.5 equiv. of KOH. (c) 1H NMR spectrum of compound 1' in DMSO-d_6. (d) Acidification with trifluoroacetic acid retained its yellow color. (e) Compound 1' in DMSO-d_6 in presence of trifluoroacetic acid. The star mark in green and red color represent the peaks for DMSO-d_6 and for trifluoroacetic acid.
Table T1. Crystallographic data and structure refinements for 6a and 52.

<table>
<thead>
<tr>
<th></th>
<th>6a</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₄₈H₄₉N₅O₉</td>
<td>C₄₅H₃₉N₇O₁₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>839.92</td>
<td>869.83</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Trigonal</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P -3</td>
<td>P 21/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>15.5323(6)</td>
<td>23.327 (14)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>15.5323(6)</td>
<td>11.333 (6)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>11.4631(6)</td>
<td>15.245 (9)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (°)</td>
<td>90</td>
<td>99.7</td>
</tr>
<tr>
<td>γ (°)</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>2394.99(18)</td>
<td>3973 (4)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Temperature</td>
<td>200(2) K</td>
<td>200(2) K</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>ρcalc Mg/m³</td>
<td>1.165</td>
<td>1.454</td>
</tr>
<tr>
<td>µ, mm⁻¹</td>
<td>0.081</td>
<td>0.108</td>
</tr>
<tr>
<td>F (000)</td>
<td>888</td>
<td>1816</td>
</tr>
<tr>
<td>Independent reflection</td>
<td>2791</td>
<td>4927</td>
</tr>
<tr>
<td>Reflection used</td>
<td>15166</td>
<td>6537</td>
</tr>
<tr>
<td>Rint value</td>
<td>0.0626</td>
<td>0.0554</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>GOOF</td>
<td>1.079</td>
<td>1.651</td>
</tr>
<tr>
<td>R indices[I>2sigma(I)]</td>
<td>R1 = 0.1807, wR2 = 0.4861</td>
<td>R1 = 0.1700, wR2 = 0.4652</td>
</tr>
<tr>
<td>R indices(all data)</td>
<td>R1 = 0.2109, wR2 = 0.4985</td>
<td>R1 = 0.2315, wR2 = 0.4923</td>
</tr>
</tbody>
</table>

Table T2. Hydrogen bonding distances (Å) and Bond angles (°) in complex 6a

<table>
<thead>
<tr>
<th></th>
<th>Bond distances (Å)</th>
<th>Bond angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1-H1…N3</td>
<td>6.970</td>
<td>180.00</td>
</tr>
<tr>
<td>N2-H2…O3</td>
<td>2.234</td>
<td>159.77</td>
</tr>
<tr>
<td>C7-H7…O3</td>
<td>2.567</td>
<td>160.13</td>
</tr>
<tr>
<td>C1-H1A…O3</td>
<td>2.636</td>
<td>148.15</td>
</tr>
<tr>
<td>C11-H11…O3</td>
<td>2.561</td>
<td>130.25</td>
</tr>
</tbody>
</table>