Supplementary Information

Stoichiometry-controlled growth of $\text{Ba}_x\text{Sr}_{1-x}\text{TiO}_3$ thin films and their electrical behavior in heterojunction assemblies

Soumen Das1, Daan Liu1, Vallivedu Janardhanam2, Chel-Jong Choi2, and Yoon-Bong Hahn1,2,*

1School of Semiconductor and Chemical Engineering, 2WCU Department of BIN Fusion Technology, Chonbuk National University, 664-14 Duckjin-Dong 1 Ga, Jeonju 561-756, Republic of Korea

* Corresponding author:
E-mail: ybhahn@chonbuk.ac.kr (Y. B. Hahn)

Figure 1S. Cross-sectional FESEM images of multiple-coated $\text{Ba}_x\text{Sr}_{1-x}\text{TiO}_3$ thin films (Case I).
Figure 2S. Cross-sectional FESEM images of multiple-coated Ba$_x$Sr$_{1-x}$TiO$_3$ thin films (Case II).

Figure 3S. The atomic force microscopy images of the Ba$_x$Sr$_{1-x}$TiO$_3$ thin films annealed at 700 °C.
Figure 4S. The room temperature Raman spectra of the commercial quartz used in the present study.

Figure 5S. The Capacitance-Voltage plot of Ag/p-Si(110)/Ag at different frequencies.