Supplementary Material (ESI) for RSC Advances
This journal is (c) The Royal Society of Chemistry 2012

Anatase/rutile TiO₂ nanocomposite microspheres with hierarchically porous structures for high-performance lithium-ion batteries

Junyao Shen, a,b Hai Wang, a,b Yu Zhou, a,b Naiqing Ye, a Guobao Li, c and Linjiang Wang a,b

a State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, Guilin University of Technology, Guilin, 541004, P. R. China. Fax: +86-773-5896-671; Tel: +86-773-5896-672; E-mail: hbwanghai@gmail.com

b Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, P. R. China.

c Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China; E-mail: liguobao@pku.edu.cn
Fig. S1. XRD pattern and Rietveld analysis of ART nanocomposite microspheres. The difference spectrum is shown above. The lower vertical lines are the lines in the anatase and rutile standards, respectively.

Fig. S2. Representative CVs of the electrode made from as-prepared ART at a scan rate of 0.2 mV s⁻¹ in the voltage range of 1-3 V versus Li⁺/Li for the first, second, and fifth cycles.
Fig. S3 (a) CVs of the electrode made from ART at a scan rate of 0.2 mV s⁻¹ in the voltage range of 1–3 V versus Li⁺/Li. The 2nd and 5th cycles are superimposed. (b) Galvanostatic insertion and desertion curves of ART nanocomposite measured at a scan rate of 5 C after 1, 50, 80 and 100 cycles and P25 at 5 C for 50 cycles at 1–3 V versus Li⁺/Li.