Facile synthesis of layered LiV₃O₈ hollow nanospheres as superior cathode materials for high-rate Li-ion batteries

Jun Liu,* Wei Liu, Yanling Wan, Shaomin Ji,* Jinbin Wang, and Yichun Zhou*

Key Laboratory of Low Dimensional Materials & Application Technology, Ministry of Education, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, 411105, China

Fax: (+)86-731-58293586

Tel: (+)86-731-58298119

E-mail: jliu@xtu.edu.cn; smji@xtu.edu.cn; zhouyc@xtu.edu.cn
Experimental section

Synthesis of uniform V$_2$O$_3$ hollow nanosphere precursors

V$_2$O$_3$ hollow nanospheres were synthesized through a template-free solvothermal route. In a typical synthesis, 0.4 g vanadium (IV) acetylacetone were dissolved in 20–40 mL N,N-dimethylformamide (DMF) and stirred for about 1 h. A clear transparent solution was formed, which was transferred into a 30–50 mL Teflon-lined stainless steel autoclave. The autoclave was sealed and maintained at 220 °C for 36 h. After the solution was cooled down to room temperature, the obtained black products were collected by centrifuging the mixture, which were then washed with absolute ethanol and distilled water several times and dried at 80 °C for 6 h.

Synthesis of LiV$_3$O$_8$ porous and hollow nanosphere products

The above-obtained crystalline V$_2$O$_3$ precursor and LiOH·H$_2$O (V:Li = 3:1.05, molar ratio) was mixed in methanol under magnetic stirring and kept for 12 h. The mixture solution was heated to 50 °C to evaporate the methanol. The powder mixture produced was firstly heat treatment at 150 °C for 10 h in vacuum, and finally annealed at 450 °C for 10 h in air. Finally, a brown LiV$_3$O$_8$ powder sample was thus obtained.

Synthesis of LiV$_3$O$_8$ solid nanosphere materials

The fabrication of LiV$_3$O$_8$ solid nanosphere cathode products is similar to LiV$_3$O$_8$ hollow nanosphere except for applying V$_2$O$_3$ solid nanospheres (obtained via a shorter solvothermal crystallization time) as the vanadium precursor.

Synthesis of LiV$_3$O$_8$ bulk materials

LiV$_3$O$_8$ bulk materials were prepared by a conventional solid-state reaction by heating
a mixture of V$_2$O$_5$ and LiOH·H$_2$O (V:Li = 3:1.05, molar ratio) to a temperature of 650 °C. The resulting melt was quenched to room temperature leading to a brown solid consisting of crystalline of LiV$_3$O$_8$ particles.

Materials characterization

The collected products were characterized by an X-ray diffractometry (XRD) on a Rigaku-DMax 2400 diffractometer equipped with the graphite monochromatized Cu Kα radiation flux at a scanning rate of 0.02°s$^{-1}$. Scanning electron microscopy (SEM) analysis was carried using a JSM-6700F scanning electron microscope. The structure of these hollow nanospheres was investigated by means of transmission electron microscopy (TEM, Philips, TecnaiG2 20). The N$_2$ adsorption/desorption isotherm was obtained at 77 K using Beishide Instrument-ST, 3H-2000PS2.

Electrochemical test

The electrochemical performances of the as-prepared LiV$_3$O$_8$ products were measured by using CR2025 coin cells at 2.0–4.0V with NEWARE-BTS-5V20mA battery test system. For the preparation of the working electrode, a mixture of LiV$_3$O$_8$ hollow nanospheres active material, carbon black, and polyvinylidene fluoride (PVDF) in the weight ratio of 80:15:5 was ground in a mortar with N-methyl-2-pyrrolidone (NMP) as solvent to make slurry. A lithium foil was used as the counter electrode and a solution of 1M LiPF$_6$ in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 in volume) was used as electrolyte. The typical electrode was dried at 120 °C for 12 h.
under vacuum before assembled into coin cell in an argon-filled glove box. The charge/discharge curves and cycling capacity were evaluated by NEWARE-BTS-5V20mA battery tester, in the cut-off voltages of 2.0 and 4.0 V.

![TEM images of solid (a) and core-shell (b)V$_2$O$_3$ nanosphere precursors.](image)

Fig. S1 TEM images of solid (a) and core-shell (b)V$_2$O$_3$ nanosphere precursors.
Fig. S2 N$_2$ adsorption/desorption isotherm and the corresponding pore size distribution of LiV$_3$O$_8$ porous and hollow nanospheres calculated using BJH method.
Fig. S3 Electrochemical performances of LiV$_3$O$_8$ porous and hollow nanosphere cathode materials in the high current density of 20C rate. The inset shows the cycling performance of these unique microstructured LiV$_3$O$_8$ materials.
Fig. S4 SEM images of LiV$_3$O$_8$ bulk materials prepared by a conventional solid-state reaction.
Fig. S5 Cycling performance of LiV$_3$O$_8$ hollow nanospheres (a), LiV$_3$O$_8$ solid nanospheres (b) and LiV$_3$O$_8$ bulk materials (c) at a current density of 0.1C.