Electronic Supplementary Information

Organophotocatalysis system of p/n bilayers for wide visible-light-induced molecular hydrogen evolution

Toshiyuki Abe, *^a Junpei Chiba,^a Misaki Ishidoya^a and Keiji Nagai^b

a: Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, JAPAN

b: Chemical Resources Laboratory, Tokyo Institute of Technology, Suzukake-dai, Midori-ku, Yokohama 226-8503, JAPAN

* Correspondence to be addressed

Absorption spectra of H_2Pc/C_{60} and PTCBI/ H_2Pc bilayers

Fig. S1 Absorption spectra of H_2Pc/C_{60} and PTCBI/ H_2Pc bilayers. Film thickness of H_2Pc/C_{60} , $H_2Pc = 75$ nm and $C_{60} = 125$ nm. Film thickness of PTCBI/ H_2Pc , PTCBI = 300 nm and $H_2Pc = 60$ nm.

Table S1 Comparison of photoenergy conversion efficiency (η) and EQE for other visible-light photocatalysts with those values for the present system. For reference, the efficiencies for the photovoltaic cells of C₆₀/H₂Pc are also listed.

System	η / %		EQE / % ^a	Reference
Organic photovoltaic cell				
C_{60}/H_2Pc	0.03	1.0	(600 nm)	1
C_{60}/H_2Pc	0.25		× /	2
C_{60}/H_2Pc including co-evaporant	2.5			2
p-i-n-structured C_{60}/H_2Pc^b	2.5	65	(650 nm)	3
Photocatalyst for H ₂ evolution				
(co-catalyst)				
TiO ₂ ^c	0.4			4
$SrTiO_3$:Rh (Ru) ^d	0.12	1.7	(420 nm)	5
		0.2	(500 nm)	
dye-modified KTa(Zr)O ₃ (Pt)	0.013			6
$In_{0.9}Ni_{0.1}TaO_4$ (NiO _y)		0.66	(402 nm)	7
$(CuAg)_{0.15}In_{0.3}Zn_{1.4}S_2$ (Ru)		7.4	(520 nm)	8
		1.0	(600 nm)	
TaON $(Pt)^e$		0.4	(420 nm)	9
$[(Ga_{1-x}Zn_x)(N_{1-x}O_x)](Rh_{2-v}Cr_vO_3)$		5.9	(420-440 nm)	10
CdS (Pt-PdS)		93	(420 nm)	11
$g-C_3N_4$ (Pt)		0.1	(420-460 nm)	12
$ZrO_2/TaON(Pt)^e$		6.3	(420.5 nm)	13
$CuGa_2In_3S_8$ (Rh)		15	(560 nm)	14
		12	(600 nm)	
		5	(640 nm)	
$ZnIn_2S_4$ (Pt)		34	(420 nm)	15
		24	(550 nm)	
A wired PEC cell of a commercial	4.7			16
triple-junction amorphous silicon				
photoanode ^f				
A wireless cell of a commercial	2.5			16
triple-junction amorphous silicon				
(NiMoZn)				
H_2Pc/C_{60} (Pt)		4.0	(600 nm)	this work
		1.2	(700 nm)	

^{*a*} The value in the parenthesis represents the wavelength employed for measuring EQE.

^{*b*} The term "i" indicates a co-deposition layer of C_{60} and H_2Pc . The EQE value was estimated from the reported internal quantum efficiency and the absorption ratio of the film employed. ^{*c*} A typical UV-responsive photocatalyst.

^{*d*} In the Z-scheme photocatalysis system, the photocatalyst was concurrently used in combination with BiVO₄ photocatalyst for O_2 evolution.

^{*e*} In the Z-scheme photocatalysis system, the photocatalyst was used in combination with Pt-loaded WO₃ photocatalyst for O₂ evolution in the presence of IO_3^-/I^- .

^fH₂ occurred at a counter electrode of NiMoZn loaded on Ni mesh.

References

[1] K. Murata. S. Ito, K. Takahashi and B. M. Hoffman, Appl. Phys. Lett., 1996, 68, 427.

[2] T. Kaji, M. Zhang, S. Nakao, K. Iketani, K. Yokoyama C. W. Tang and M. Hiramoto, *Adv. Mater.*, 2011, **23**, 3320.

[3] K. Suemori, T. Miyata, M. Yokoyama and M. Hiramoto, *Appl. Phys. Lett.*, 2005, 86, 063509.

[4] A. Fujishima, K. Kohayakawa and K. Honda, J. Electrochem. Soc., 1975, 122, 1487.

[5] Y. Sasaki, H. Nemoto, K. Saito and A. Kudo, J. Phys. Chem. C, 2009, 113, 17536.

[6] H. Hagiwara, T. Inoue, K. Kaneko and T. Ishihara, Chem. Eur. J., 2009, 15, 12862.

[7] Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature, 2002, 414, 625.

[8] I. Tsuji, H. Kato and A. Kudo, Ang. Chem. Int. Ed., 2005, 44, 3565.

[9] R. Abe, T. Takata, H. Sugihara and K. Domen, Chem. Commun., 2005, 3829.

[10] K. Maeda, K. Teramura, D. Li, T. Takata, N. Saito, Y. Inoue and K. Domen, Nature,

2006, 440, 295; K. Maeda, K. Teramura and K. Domen, J. Catal., 2008, 254, 198.

[11] H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi and C. Li, *J. Catal.*, 2009, 266, 165.

[12] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2009, **8**, 76.

[13] K. Maeda, M. Higashi, D. Li, R. Abe and K. Domen, J. Am. Chem. Soc., 2010, 132, 5858.

[14] H. Kaga, K. Saito and A. Kudo, Chem. Commun., 2010, 46, 3779.

[15] B. Chai, T. Peng, P. Zeng, X. Zhang and X. Li, J. Phys. Chem. C, 2011, 115, 6149.

[16] S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, D. G. Nocera, *Science*, 2011, **334**, 645.