Water-Soluble Gold Nanoparticles Stabilized with Cationic Phosphonium Thiolate Ligands

Yon Ju-Nam, a Yu-Su Chen, b Jesus J. Ojeda, c David W. Allen, b Neil A. Cross, b Philip H. E. Gardiner, b and Neil Bricklebank b*

a. Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
b. Biomedical Research Centre, Sheffield Hallam University, City Campus, Sheffield S1 1WB, UK
c. Experimental Techniques Centre, Brunel University, Kingston Lane, Uxbridge, Middlesex, UB8 3PH, UK

*Corresponding author E-mail: n.bricklebank@shu.ac.uk

Supplementary Figures
Fig S1. Widescan XPS spectra of freeze-dried phosphonium-AuNPs; (a) obtained from PPTS ligand; (b) Nanoparticles obtained from PPTA ligand.
Fig S1. (c) Widescan XPS spectrum of freeze-dried phosphonium-AuNPs obtained from FPPTS ligand.
Fig S2. High resolution Au(4f) XPS spectra of freeze-dried phosphonium-AuNPs. (a) Nanoparticles obtained from PPTA ligand; (b) Nanoparticles obtained from FPPTS ligand.
Fig S3. High resolution S_{2p} XPS spectrum of the PPTS ligand.
Fig S4. SIMS spectrum of phosphonium-AuNPs derived from PPTS ligands: (a) positive ion mode; (b) negative ion mode.
Fig S5. SIMS spectrum of phosphonium-AuNPs derived from PPTA ligands: (a) positive ion mode; (b) negative ion mode.
Fig S6. SIMS spectrum of phosphonium-AuNPs derived from FPPTS ligands: (a) positive ion mode; (b) negative ion mode.
Fig.S7 UV-visible spectra of a fresh solution of phosphonium-AuNPs prepared using PPTS ligand () and the freeze-dried nanoparticles re-suspended in water (•) and methanol (▲).