Tandem 1,5-migration/Michael reactions to prepare adducts of pyrazolone derivatives: protecting group-directed rearrangement

Zhijin Lu, Chen Xie, Jianlin Han,* and Yi Pan*

Table of Contents:

1 General information...S2
2 General procedures for the synthesis of pyrazole..............................S2
3 General Procedure for the addition of 1 and 2 to nitroolefins.............S5
4 General procedure for the addition of 3 to nitroolefins.....................S19
5 X-ray analysis...S23
6 NMR Spectra of 1–3 and 5–7...S26
1 General information

NMR spectra were obtained on Bruker 300 or 400 MHz spectrometer in DMSO-d$_6$ or CDCl$_3$, and chemical shifts are reported in ppm using TMS as internal standard. IR and ESI-MS spectra were measured on Bruker Vector 22 as KBr pellets and Finnigan Mat TSQ 7000 instruments respectively. Microanalyses were obtained on Perkin-Elmer 240 instruments, and melting points (mp) were determined with a digital electrothermal apparatus without further correction.

2 General procedures for the synthesis of pyrazole

A vial charged with 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (10 mmol), acyl chloride (10 mmol) and DCM (25 mL) was stirred and cooled to -40 °C, The mixture was warmed to room temperature and continue to react for another 8 hours. The reaction mixture was filtered and evaporated to dryness. The residue was purified through chromatography on a silica gel column eluted with dichloromethane and methanol to give the corresponding products.

Benzyl (3-methyl-1-phenyl-1H-pyrazol-5-yl) carbonate (1a)

Yellow oil. 1H NMR (300MHz, CDCl$_3$): δ 2.36 (s, 3H), 5.24 (s, 2H), 6.16 (s, 1H), 7.28-7.45 (m, 8H), 7.58-7.60 (m, 2H). 13C NMR (75MHz, CDCl$_3$): δ 14.6, 71.3, 95.5, 122.9, 127.2, 128.7, 128.8, 129.1, 129.2, 134.1, 137.9, 144.6, 148.9, 151.0. IR (KBr): ν = 3066, 3035, 1781, 1597, 1564, 1506, 1456, 1442, 1386, 1369, 1225, 1179, 1158, 1013, 905, 756, 695 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{18}$H$_{16}$N$_2$O$_3$Na: 331.1053, found: 331.1053.
Benzyl (1-(4-chlorophenyl)-3-methyl-1H-pyrazol-5-yl) carbonate (1b)

Yellow solid. M.p. 62-64 °C. 1H NMR (300MHz, CDCl$_3$): δ 2.34 (s, 3H), 5.25 (s, 2H), 6.15 (s, 1H), 7.35-7.42 (m, 7H), 7.50-7.53 (m, 2H). 13C NMR (75MHz, CDCl$_3$): δ 14.5, 71.4, 95.6, 123.9, 128.7, 128.8, 129.2, 129.3, 132.7, 133.9, 136.4, 144.7, 149.2, 150.8. IR (KBr): ν = 3177, 1768, 1594, 1586, 1563, 1505, 1462, 1456, 1440, 1411, 1386, 1367, 1267, 1244, 1227, 1181, 1154, 1118, 1096, 1013, 955, 916, 835, 812, 779, 745, 699, 653, 503 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{18}$H$_{16}$N$_2$O$_3$Na: 365.0663, found: 365.0659.

Tert-butyl (3-methyl-1-phenyl-1H-pyrazol-5-yl) carbonate (2a)

Yellow oil. 1H NMR (300MHz, CDCl$_3$): δ 1.46 (s, 9H), 2.33 (s, 3H), 6.07 (s, 1H), 7.29-7.34 (m, 1H), 7.42-7.47 (m, 2H), 7.57-7.60 (m, 2H). 13C NMR (75MHz, CDCl$_3$): δ 14.5, 27.4, 85.2, 95.5, 122.9, 127.0, 129.1, 138.1, 144.9, 148.8, 148.9. IR (KBr): ν = 2983, 2933, 1778, 1598, 1568, 1507, 1477, 1456, 1439, 1389, 1372, 1274, 1248, 1139, 1052, 1026, 878, 814, 775, 763, 694, 625 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{15}$H$_{18}$N$_2$O$_3$Na: 297.1210, found: 297.1207.
Tert-butyl (1-(4-chlorophenyl)-3-methyl-1H-pyrazol-5-yl) carbonates (2b)

Yellow oil. 1H NMR (300MHz, CDCl$_3$): δ 1.49 (s, 9H), 2.31 (s, 3H), 6.08 (s, 1H), 7.40-7.43 (m, 2H), 7.53-7.56 (m, 2H). 13C NMR (75MHz, CDCl$_3$): δ 14.5, 27.4, 85.5, 95.7, 123.9, 129.2, 132.5, 136.6, 145.0, 148.7, 149.2. IR (KBr): ν = 2981, 1789, 1780, 1597, 1587, 1568, 1505, 1477, 1408, 1396, 1371, 1273, 1241, 1166, 1102, 1092, 1050, 1012, 991, 879, 836, 811, 784, 774, 622 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{15}$H$_{17}$N$_2$O$_3$ClNa: 331.0820, found: 331.0821.

Ethyl (3-methyl-1-phenyl-1H-pyrazol-5-yl) carbonates (2c)

Yellow oil. 1H NMR (400MHz, CDCl$_3$): δ 1.32 (t, J=7.0Hz, 3H), 2.34 (s, 3H), 4.29 (q, J=7.0Hz, 2H), 6.12 (s, 1H), 7.30-7.34 (m, 1H), 7.43-7.47 (m, 2H), 7.57-7.60 (m, 2H). 13C NMR (100MHz, CDCl$_3$): δ 14.0, 14.5, 65.9, 95.3, 122.9, 127.1, 129.1, 137.9, 144.7, 148.9, 150.8. IR (KBr): ν = 3065, 2984, 2931, 1781, 1598, 1563, 1507, 1443, 1389, 1369, 1301, 1235, 1174, 1160, 1097, 1034, 1019, 983, 970, 892, 761, 693 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{13}$H$_{14}$N$_2$O$_3$Na: 269.0897, found: 269.0898.

3-methyl-1-phenyl-1H-pyrazol-5-yl acetate (3a)

Yellow oil. 1H NMR (300MHz, CDCl$_3$): δ 2.26 (s, 3H), 2.34 (s, 3H), 6.10 (s, 1H), 7.31-7.35 (m, 1H), 7.43-7.48 (m, 2H), 7.54-7.56 (m, 2H). 13C NMR (75MHz, CDCl$_3$): δ 14.5, 20.7, 95.9, 123.0, 127.1, 129.1, 138.1, 144.3, 148.9, 166.1. IR (KBr): ν = 3066, 2928, 1790, 1596, 1561, 1505, 1439, 1387, 1369, 1186, 1144, 1044, 1024, 1008, 882, 807, 760, 694, 671 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{12}$H$_{12}$N$_2$O$_2$Na: 239.0791, found: 239.0793.
1-(4-chlorophenyl)-3-methyl-1H-pyrazol-5-yl acetate (3b)

Yellow oil. 1H NMR (400MHz, CDCl$_3$): δ 2.28 (s, 3H), 2.33 (s, 3H), 6.11 (s, 1H), 7.40-7.44 (m, 2H), 7.50-7.53 (m, 2H). 13C NMR (100MHz, CDCl$_3$): δ 14.5, 20.8, 96.1, 124.1, 129.2, 132.7, 136.6, 144.4, 149.3, 165.9. IR (KBr): ν = 2928, 1793, 1597, 1586, 1560, 1501, 1473, 1441, 1408, 1387, 1369, 1185, 1143, 1094, 1038, 1014, 974, 881, 832, 808, 780, 686, 515 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{12}$H$_{11}$N$_2$O$_2$ClNa: 273.0401, found: 273.0410.

3 General Procedure for the addition of 1 and 2 to nitroolefins

A vial charged with benzyl (3-methyl-1-phenyl-1H-pyrazol-5-yl) carbonate (1a) (0.5 mmol), DMAP (0.005 mmol) and CH$_2$Cl$_2$ (2 mL) was stirred at room temperature, and then nitroolefins 4 (0.75 mmol) was added. The stirring was maintained for the indicated time. The reaction mixture was directly charged onto silica gel column eluted with hexane/ethyl acetate dichloromethane and methanol to give the corresponding products 5 or 6.

![Structure of Benzyl-5-methyl-4-(2-nitro-1-phenylethyl)-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate](structure.png)

Benzyl-5-methyl-4-(2-nitro-1-phenylethyl)-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate (5a)

Yellow oil, yield: 98 %. 1H NMR (300MHz, CDCl$_3$): δ 2.60 (s, 3H), 4.59-4.70 (m, 1H), 4.98-5.03 (m, 1H), 5.08-5.08 (m, 2H), 5.48-5.56 (m, 1H), 6.91-7.52 (m, 15H).
13C NMR (75MHz, CDCl$_3$): δ 13.4, 40.1, 69.9, 76.2, 111.3, 122.7, 123.4, 127.0, 127.4, 127.9, 128.0, 128.4, 128.6, 128.8, 129.0, 129.3, 129.3, 133.5, 138.2, 138.3, 149.4, 151.4, 165.8. IR (KBr) ν 3459, 3064, 3032, 2921, 1876, 1279, 698 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{26}$H$_{23}$N$_3$O$_5$, 480.1530, found: 480.1533.

Benzyl-5-methyl-4-(2-nitro-1-p-tolylethyl)-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate(5b)

Yellow oil, yield: 92%. 1H NMR (300MHz, CDCl$_3$): δ 2.33 (s, 3H), 2.59 (s, 3H), 4.54-4.59 (m, 1H), 4.81-5.03 (m, 1H), 5.07-5.09 (m, 1H), 5.46-5.53 (m, 1H), 6.88-7.39 (m, 14H). 13C NMR (75MHz, CDCl$_3$): δ 13.4, 21.1, 39.8, 69.9, 76.3, 111.6, 122.7, 123.3, 126.9, 127.2, 127.7, 128.4, 128.5, 128.8, 129.0, 129.3, 129.7, 129.9, 133.5, 135.2, 137.8, 138.3, 149.5, 151.2, 165.8. IR (KBr) ν 3064, 3033, 2955, 2933, 2860, 1278, 696 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{27}$H$_{25}$N$_3$O$_5$, 494.1686, found: 494.1689.

Benzyl 4-(1-(2-fluorophenyl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate(5c)

Yellow oil, yield: 92%. 1H NMR (300MHz, CDCl$_3$): δ 2.65 (s, 3H), 4.96-5.06 (m, 2H), 5.09 (s, 2H), 5.48-5.55 (m, 1H), 6.89-7.72 (m, 14H). 13C NMR (75MHz, CDCl$_3$): δ
13.4, 13.4, 31.4, 31.4, 70.0, 74.8, 110.0, 115.4, 115.7, 122.7, 123.3, 124.6, 124.8, 124.9, 124.9, 127.0, 128.5, 128.6, 128.8, 129.0, 129.3, 129.4, 129.5, 129.6, 133.5, 138.2, 149.4, 151.8, 158.2, 161.4, 165.7. IR (KBr) \(\nu \) 3066, 3035, 2961, 1750, 1683, 696 cm\(^{-1}\). HRMS [M+Na\(^+\)]: calcd for C\(_{26}\)H\(_{22}\)N\(_3\)O\(_5\)F, 498.1436, found: 498.1436.

Benzyl 4-(1-(4-chlorophenyl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate (5d)

Yellow oil, yield: 95%, \(^1\)H NMR (300MHz, CDCl\(_3\)): \(\delta \) 2.59 (s, 3H), 4.55-4.60 (m, 1H), 4.98-5.08 (m, 1H), 5.08 (s, 2H), 5.39-5.46 (m, 1H), 6.89-7.72 (m, 14H). \(^1\)^\(^3\)C NMR (75MHz, CDCl\(_3\)): \(\delta \) 13.4, 39.4, 70.0, 74.8, 110.9, 122.7, 127.1, 128.4, 128.6, 128.8, 129.0, 129.3, 133.4, 133.9, 138.1, 138.7, 149.3, 151.3, 165.7. IR (KBr) \(\nu \) 3066, 3035, 2961, 1750, 1683, 696 cm\(^{-1}\). HRMS [M+Na\(^+\)]: calcd for C\(_{26}\)H\(_{22}\)N\(_3\)O\(_5\)Cl, 514.1140, found: 514.1142.

Benzyl 4-(1-(4-bromophenyl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate (5e)
Yellow oil, yield: 95%. 1H NMR (300MHz, CDCl$_3$): δ 2.59 (s, 3H), 4.55-4.60 (m, 1H), 4.98-5.08 (m, 1H), 5.08 (s, 2H), 5.39-5.46 (m, 1H), 6.88-7.46 (m, 14H). 13C NMR (75MHz, CDCl$_3$): δ 13.3, 39.5, 70.0, 71.9, 76.0, 110.8, 122.1, 122.7, 123.3, 127.1, 128.4, 128.6, 128.8, 128.8, 129.1, 129.3, 129.6, 132.3, 133.4, 137.2, 138.1, 149.3, 151.3, 165.6. IR (KBr) ν 3065, 3034, 2961, 1750, 1683, 695 cm$^{-1}$.

HRMS [M+Na$^+$]: calcd for C$_{26}$H$_{22}$N$_3$O$_5$Br, 558.0635, found: 558.0624.

Benzyl
4-(1-(4-methoxyphenyl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate(5f)

Yellow oil, yield: 85%.1H NMR (300MHz, CDCl$_3$): δ 2.58 (s, 3H), 3.79 (s, 3H), 4.53-4.70 (m, 1H), 4.95-5.02 (m, 1H), 5.07-5.07 (m, 2H), 5.31-5.50 (m, 1H), 6.85-7.43 (m, 14H). 13C NMR (75MHz, CDCl$_3$): δ 13.4, 39.4, 55.2, 69.9, 76.4, 111.6, 122.7, 114.3, 114.5, 127.0, 128.4, `28.5, 128.8, 129.0, 129.0, 129.3, 130.2, 133.5, 138.3, 149.5, 151.1, 159.2, 165.8. IR (KBr) ν 3065, 3034, 2957, 2934, 1683, 695 cm$^{-1}$.

HRMS [M+Na$^+$]: calcd for C$_{27}$H$_{25}$N$_3$O$_6$, 510.1636, found: 510.1642.
Benzyl

4-(1-(3-methoxyphenyl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate (5g)

Yellow oil, yield: 95%, 1H NMR (300MHz, CDCl$_3$): δ 2.59 (s, 3H), 3.79 (s, 3H), 4.55-4.60 (m, 1H), 4.98-5.05 (m, 1H), 5.07-5.09 (m, 2H), 5.48-5.54 (m, 1H), 6.82-7.46 (m, 14H). 13C NMR (75MHz, CDCl$_3$): δ 13.5, 40.1, 55.3, 69.9, 76.1, 111.3, 113.2, 113.7, 120.0, 122.7, 123.3, 127.0, 127.6, 128.4, 128.5, 129.0, 129.3, 130.3, 133.5, 138.3, 139.7, 149.4, 151.4, 160.1, 165.8. IR (KBr) ν: 3065, 3034, 2960, 2939, 1683, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{27}$H$_{25}$N$_3$O$_6$, 510.1636, found: 510.1637.

Benzyl

5-methyl-4-(1-(naphthalen-1-yl)-2-nitroethyl)-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate (5h)

Yellow oil, yield: 85%, 1H NMR (300MHz, CDCl$_3$): δ 2.55 (s, 3H), 4.88-5.00 (m, 1H), 4.98-5.05 (m, 1H), 5.07 (s, 2H), 5.48-5.54 (m, 1H), 6.82-7.46 (m, 17H). 13C NMR (75MHz, CDCl$_3$): δ 13.8, 35.1, 69.9, 75.6, 110.9, 121.9, 122.8, 123.5, 125.8, 126.0, 126.5, 127.0, 127.1, 127.2, 128.4, 128.5, 128.7, 128.7, 128.8, 129.1, 129.6, 130.5,
133.2, 133.5, 134.1, 138.9, 149.4, 152.0, 166.4. IR (KBr) ν 3063, 3037, 2961, 2921, 1683, 696 cm⁻¹. HRMS [M+Na⁺]: calcd for C₃₀H₂₅N₃O₅, 530.1686, found: 510.1683.

Benzyl

4-(1-(furan-2-yl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate (5i)

Yellow oil, yield: 83 %, ¹H NMR (300MHz, CDCl₃): δ 2.60 (s, 3H), 4.80-4.83 (m, 1H), 4.99-5.06 (m, 1H), 5.10-5.12 (m, 2H), 5.26-5.34 (m, 1H), 6.26-7.38 (m, 13H). ¹³C NMR (75 MHz, CDCl₃): δ 13.4, 33.4, 70.0, 76.6, 107.5, 108.9, 110.8, 126.9, 128.4, 128.6, 128.8, 129.0, 133.4, 138.2, 142.2, 149.4, 149.8, 152.0, 165.2. IR (KBr) ν 3147, 3177, 3065, 3035, 1693, 696 cm⁻¹. HRMS [M+Na⁺]: calcd for C₂₄H₂₁N₃O₆, 470.1323, found: 470.1322.

Benzyl

5-methyl-4-(2-nitro-1-(thiophen-2-yl)ethyl)-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate (5j)

Yellow oil, yield: 76 %, ¹H NMR (300MHz, CDCl₃): δ 2.61 (s, 3H), 4.89-5.03 (m, 2H), 5.09-5.11 (m, 2H), 5.43-5.50 (m, 1H), 6.89-7.41 (m, 13H). ¹³C NMR (75 MHz, CDCl₃): δ 13.4, 34.8, 70.0, 76.2, 110.9, 122.7, 123.3, 125.1, 126.0, 127.0, 127.4, 128.4, 128.6, 128.8, 129.0, 133.4, 138.2, 139.6, 149.4, 151.3, 165.3. IR (KBr) ν
3090, 3067, 3035, 2959, 1683, 698 cm\(^{-1}\). HRMS [M+Na\(^+\)]: calcd for C\(_{24}H_{21}N_3O_5S\), 486.1094, found: 486.1096.

![Chemical structure](image1)

Benzyl

\(2-(4\text{-chlorophenyl})-5\text{-methyl}-4\text{-}(2\text{-nitro-1-phenylethyl})-3\text{-oxo-2,3-dihydropyrazole-1-carboxylate}(5k)\)

Yellow oil, yield: 92\%, \(^1H\) NMR (300MHz, CDCl\(_3\)): \(\delta\) 2.60 (s, 3H), 4.58-4.69 (m, 1H), 4.94-5.00 (m, 1H), 5.09-5.14 (m, 2H), 5.48-5.56 (m, 1H), 6.94-7.49 (m, 14H). \(^{13}\)C NMR (75MHz, CDCl\(_3\)): \(\delta\) 13.5, 40.1, 65.3, 76.1, 111.4, 124.6, 127.0, 127.8, 128.1, 128.6, 129.0, 129.1, 129.3, 129.3, 132.6, 133.3, 136.7, 138.0, 149.3, 151.8, 165.7. IR (KBr) \(\nu\) 3090, 3064, 2961, 1751, 699 cm\(^{-1}\). HRMS [M+Na\(^+\)]: calcd for C\(_{26}H_{22}N_3O_5Cl\), 514.1140, found: 514.1129.

![Chemical structure](image2)

Benzyl

\(2-(4\text{-chlorophenyl})-4\text{-}(1\text{-}(2\text{-fluorophenyl})-2\text{-nitroethyl})-5\text{-methyl-3-oxo-2,3-dihydropyrazole-1-carboxylate}(5l)\)

Yellow oil, yield: 93\%, \(^1H\) NMR (300MHz, CDCl\(_3\)): \(\delta\) 2.64 (s, 3H), 4.91-5.06 (m, 2H), 5.10-5.10 (m, 2H), 5.17-5.22 (m, 1H), 5.48-5.55 (m, 1H), 6.94-7.65 (m, 13H). \(^{13}\)C
NMR (75MHz, CDCl₃): δ 13.4, 13.4, 31.4, 31.4, 70.1, 74.7, 110.0, 115.5, 115.8, 124.5, 124.9, 127.0, 128.6, 128.6, 128.7, 129.0, 129.1, 129.2, 129.3, 129.5, 129.8, 132.6, 133.3, 136.6, 149.2, 152.2, 152.6, 161.4, 165.5. IR (KBr) ν 3091, 3066, 2958, 1750, 698 cm⁻¹. HRMS [M+Na⁺]: calcd for C₂₆H₂₁N₃O₅ClF, 532.1046, found: 532.1046.

Benzyl

2-(4-chlorophenyl)-4-(1-(2-chlorophenyl)-2-nitroethyl)-5-methyl-3-oxo-2,3-dihydropyrazole-1-carboxylate(5m)

Yellow oil, yield: 92%. ¹H NMR (300MHz, CDCl₃): δ 2.66 (s, 3H), 4.80-4.86 (m, 1H), 5.10-5.10 (m, 2H), 5.17-5.22 (m, 1H), 5.49-5.57 (m, 1H), 6.93-7.40 (m, 13H). ¹³C NMR (75MHz, CDCl₃): δ 14.0, 35.7, 70.1, 74.9, 110.9, 124.6, 127.0, 127.7, 128.6, 128.7, 129.0, 129.1, 129.3, 129.4, 129.9, 132.7, 133.0, 133.3, 134.9, 136.6, 149.2, 152.7, 165.7. IR (KBr) ν 3092, 3064, 2956, 1750, 698 cm⁻¹. HRMS [M+Na⁺]: calcd for C₂₆H₂₁N₃O₅Cl₂, 548.0750, found: 548.0742.

Tert-butyl-5-methyl-4-(2-nitro-1-phenylethyl)-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate(6a)

Yellow oil, yield: 90%. ¹H NMR (300MHz, CDCl₃): 1.21-1.28 (m, 9H), 2.59 (s, 3H),
4.58-4.63 (m, 1H), 5.00-5.06 (m, 1H), 5.50-5.57 (m, 1H), 7.30-7.54 (m, 10H). \(^{13}\)C NMR (75MHz, CDCl\(_3\)): \(\delta\) 13.5, 27.5, 40.1, 76.2, 86.4, 110.6, 124.5, 127.9, 128.0, 129.0, 129.3, 132.3, 137.0, 138.3, 147.5, 151.6, 165.2. IR (KBr) \(\nu\) 3071, 2980, 2933, 1749, 699 cm\(^{-1}\). HRMS [M+Na\(^{+}\)]: calcd for C\(_{23}\)H\(_{25}\)N\(_3\)O\(_5\), 446.1486, found: 446.1687.

Tert-butyl

4-(1-(4-fluorophenyl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate(6b)

Yellow oil, yield: 92 %. \(^1\)H NMR (300MHz, CDCl\(_3\)): \(\delta\) 1.21-1.29 (m, 9H), 2.58 (s, 3H), 4.56-4.61 (m, 1H), 5.00-5.07 (m, 1H), 5.41-5.48 (m, 1H), 7.15-7.45 (m, 9H). \(^{13}\)C NMR (75MHz, CDCl\(_3\)): \(\delta\) 13.2, 27.4, 39.4, 76.4, 86.1, 110.3, 115.9, 116.3, 123.4, 126.9, 129.6, 129.7, 134.2, 134.3, 138.3, 147.5, 150.9, 160.6, 163.9, 165.1. IR (KBr) \(\nu\) 3071, 2980, 2933, 1749, 699 cm\(^{-1}\). HRMS [M+Na\(^{+}\)]: calcd for C\(_{23}\)H\(_{24}\)N\(_3\)O\(_5\)F, 464.1592, found: 464.1597.

Tert-butyl

4-(1-(4-chlorophenyl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate(6c)

Yellow oil, yield: 94%. \(^1\)H NMR (300MHz, CDCl\(_3\)): \(\delta\) 1.21-1.28 (m, 9H), 2.58 (s, 3H),
4.55-4.60 (m, 1H), 5.01-5.07 (m, 1H), 5.40-5.48 (m, 1H), 7.27-7.49 (m, 8H). 13C NMR (75MHz, CDCl$_3$): δ 13.3, 27.4, 29.7, 39.5, 76.2, 86.2, 110.0, 123.4, 126.9, 128.8, 129.3, 133.9, 137.0, 138.3, 147.5, 151.0, 165.1. IR (KBr) ν 3071, 2980, 2933, 1749, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{23}$H$_{24}$N$_3$O$_5$Cl, 480.1297, found: 480.1305.

Tert-butyl

4-(1-(4-bromophenyl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate(6d)

Yellow oil, yield: 98%, 1H NMR (300MHz, CDCl$_3$): δ 1.21-1.29 (m, 9H), 2.58 (s, 3H), 4.53-4.59 (m, 1H), 5.01-5.07 (m, 1H), 5.40-5.48 (m, 1H), 7.17-7.51 (m, 9H). 13C NMR (75MHz, CDCl$_3$): δ 13.3, 27.1, 27.4, 29.7, 39.6, 76.1, 86.2, 109.9, 122.0, 122.8, 123.4, 126.9, 128.8, 129.2, 129.3, 129.6, 132.3, 137.5, 138.2, 147.5, 151.0, 165.1. IR (KBr) ν 3071, 2980, 2933, 1749, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{24}$H$_{27}$N$_3$O$_6$, 476.1792, found: 476.1789.

Tert-butyl

4-(1-(4-methoxyphenyl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate(6e)
Yellow oil, yield: 98%, 1H NMR (300MHz, CDCl$_3$): δ 1.27-1.27 (m, 9H), 2.58 (s, 3H), 3.82 (s, 3H), 4.54-4.59 (m, 1H), 4.96-5.04 (m, 1H), 5.41-5.48 (m, 1H), 7.22-7.46 (m, 8H). 13C NMR (75MHz, CDCl$_3$): δ 13.3, 27.4, 39.5, 55.3, 77.2, 86.0, 110.7, 114.5, 123.3, 126.8, 128.2, 128.8, 129.0, 130.5, 138.4, 147.6, 150.8, 159.2, 165.3. IR (KBr) ν 3071, 2980, 2933, 1749, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{23}$H$_{24}$N$_3$O$_5$Br, 526.0775, found: 526.0765.

Tert-butyl

4-(1-(2-chlorophenyl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate(6f)

Yellow oil, yield: 96%, 1H NMR (300MHz, CDCl$_3$): δ 1.22-1.24 (m, 9H), 2.65 (s, 3H), 4.84-4.90 (m, 1H), 5.20-5.24 (m, 1H), 5.52-5.60 (m, 1H), 7.22-7.86 (m, 8H). 13C NMR (75MHz, CDCl$_3$): δ 13.8, 27.4, 35.8, 75.1, 86.1, 108.9, 123.4, 126.8, 127.7, 128.8, 129.1, 129.8, 130.1, 130.3, 132.9, 135.4, 138.4, 147.4, 151.9, 165.4. IR (KBr) ν 3071, 2980, 2933, 1749, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{23}$H$_{24}$N$_3$O$_5$Cl, 480.1297, found: 480.1302.

Tert-butyl

5-methyl-4-(1-(naphthalen-1-yl)-2-nitroethyl)-3-oxo-2-phenyl-2,3-dihydropyrazole
e-1-carboxylate(6g)

Yield oil, yield: 82%. 1H NMR (300MHz, CDCl$_3$): δ 1.21-1.28 (m, 9H), 2.55 (s, 3H), 4.89-4.95 (m, 1H), 5.52-5.57 (m, 1H), 5.76-5.83 (m, 1H), 7.32-8.27 (m, 12H). 13C NMR (75MHz, CDCl$_3$): δ 13.7, 27.4, 35.0, 75.8, 86.0, 109.9, 122.0, 123.5, 125.8, 125.9, 126.6, 126.9, 127.1, 128.6, 128.8, 129.3, 129.5, 130.6, 133.5, 134.1, 138.5, 151.6, 165.8. IR (KBr) ν 3071, 2980, 2933, 1749, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{27}$H$_{27}$N$_3$O$_5$, 496.1843, found: 496.1839.

![Chemical structure](image)

Tert-butyl

4-(1-(furan-2-yl)-2-nitroethyl)-5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate(6h)

Yellow oil, yield: 65%. 1H NMR (300MHz, CDCl$_3$): δ 1.23-1.27 (m, 9H), 2.59 (s, 3H), 4.79-4.84 (m, 1H), 5.01-5.08 (m, 1H), 5.28-5.36 (m, 1H), 6.29-7.49 (m, 7H). 13C NMR (75MHz, CDCl$_3$): δ 13.3, 27.4, 33.4, 74.3, 86.9, 107.4, 107.9, 110.8, 123.2, 126.8, 128.8, 138.4, 142.1, 147.6, 150.1, 151.6, 164.7. IR (KBr) ν 3071, 2980, 2933, 1749, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{21}$H$_{23}$N$_3$O$_6$, 436.1479, found: 436.1471.

![Chemical structure](image)

Tert-butyl

5-methyl-4-(2-nitro-1-(thiophen-2-yl)ethyl)-3-oxo-2-phenyl-2,3-dihydropyrazole-
1-carboxylate(6i)

Yellow oil, yield: 70%. 1H NMR (300MHz, CDCl$_3$): δ 1.22-1.28 (m, 9H), 2.60 (s, 3H), 4.89-5.04 (m, 2H), 5.44-5.51 (m, 1H), 6.95-7.45 (m, 8H). 13C NMR (75MHz, CDCl$_3$): δ 13.2, 27.4, 34.8, 76.4, 86.1, 109.9, 123.3, 124.9, 126.8, 127.4, 128.8, 138.4, 139.9, 147.6, 151.0, 164.7. HRMS [M+Na$^+$]: calcd for C$_{21}$H$_{23}$N$_3$O$_5$S, 452.1251, found: 436.1247.

![Diagram](image)

Tert-butyl

2-(4-chlorophenyl)-5-methyl-4-(2-nitro-1-phenylethyl)-3-oxo-2,3-dihydropyrazole-1-carboxylate(6j)

White solid, yield: 94%. m.p. 114-115 °C. 1H NMR (300MHz, CDCl$_3$): δ 1.27-1.28 (m, 9H), 2.58 (s, 3H), 4.57-4.62 (m, 1H), 4.96-5.03 (m, 1H), 5.50-5.57 (m, 1H), 7.23-7.52 (m, 9H). 13C NMR (75MHz, CDCl$_3$): δ 13.4, 27.5, 40.1, 76.2, 86.3, 110.6, 124.5, 127.8, 128.0, 128.9, 129.2, 132.3, 138.3, 139.0, 147.5, 151.6, 165.3. IR (KBr) ν 3071, 2980, 2933, 1749, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{23}$H$_{24}$N$_3$O$_5$Cl, 480.1297, found: 480.1302.

![Diagram](image)

Tert-butyl

2-(4-chlorophenyl)-4-(1-(4-chlorophenyl)-2-nitroethyl)-5-methyl-3-oxo-2,3-dihydropyrazole
ropyrzole-1-carboxylate(6k)

Yellow solid. Yield: 95%. M.p. 122-123 °C. 1H NMR (300MHz, CDCl$_3$): δ 1.27-1.27 (m, 9H), 2.58 (s, 3H), 4.58-4.59 (m, 1H), 4.96-5.04 (m, 1H), 5.41-5.48 (m, 1H), 7.22-7.46 (m, 8H). 13C NMR (75MHz, CDCl$_3$): δ 13.2, 27.4, 34.8, 76.4, 86.1, 109.9, 123.3, 124.9, 126.0, 126.8, 127.4, 128.8, 138.4, 139.9, 147.6, 151.0, 164.7. IR (KBr) ν 3071, 2980, 2933, 1749, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{23}$H$_{23}$N$_3$O$_5$Cl$_2$, 514.0907, found: 514.0909.

![nitrile](image1.png)

Tert-butyl

4-(1-(4-bromophenyl)-2-nitroethyl)-2-(4-chlorophenyl)-5-methyl-3-oxo-2,3-dihydropyrzole-1-carboxylate(6l)

Yellow solid, yield: 92%, M.p. 128-129 °C. 1H NMR (300MHz, CDCl$_3$): δ 1.26-1.34 (m, 9H), 2.57 (s, 3H), 4.53-4.58 (m, 1H), 4.97-5.03 (m, 1H), 5.40-5.49 (m, 1H), 7.22-7.49 (m, 8H). 13C NMR (75MHz, CDCl$_3$): δ 13.3, 27.4, 40.2, 76.3, 86.0, 110.4, 123.4, 126.8, 127.9, 127.9, 128.8, 129.0, 129.2, 129.3, 138.4, 138.5, 147.6, 151.0, 165.2. IR (KBr) ν 3071, 2980, 2933, 1749, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{23}$H$_{23}$N$_3$O$_5$ClBr, 558.0402, found: 558.0384.

![nitrile](image2.png)

Ethyl
5-methyl-4-(2-nitro-1-phenylethyl)-3-oxo-2-phenyl-2,3-dihydropyrazole-1-carboxylate (6m)

Yellow oil, yield: 98%, 1H NMR (300MHz, CDCl$_3$): δ 0.96-1.01 (m, 3H), 2.60 (s, 3H), 4.09-4.16 (m, 2H), 4.53-4.63 (m, 1H), 4.98-5.05 (m, 1H), 5.51-5.59 (m, 1H), 7.32-7.59 (m, 10H). 13C NMR (75MHz, CDCl$_3$): δ 13.3, 13.5, 39.6, 64.4, 76.0, 110.6, 122.1, 123.4, 127.1, 128.9, 129.6, 132.3, 137.3, 138.1, 149.3, 151.1, 165.5. IR (KBr) ν 3071, 2980, 2933, 1749, 699 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{21}$H$_{21}$N$_3$O$_5$, 418.1373, found: 418.1376.

4 General procedure for the addition of 3 to nitroolefins

A vial charged with benzyl 3-methyl-1-phenyl-1H-pyrazol-5-yl acetate (3a) (0.5 mmol), DMAP (0.005 mmol) and CH$_2$Cl$_2$ (2 mL) was stirred at room temperature, and then nitroolefins 4 (0.75 mmol) was added. The stirring was maintained for the indicated time. The reaction mixture was directly charged onto silica gel column eluted with hexane/ethyl acetate to give the corresponding products 7.

![Chemical structure](attachment:image.png)

3-methyl-4-(2-nitro-1-phenylethyl)-1-phenyl-1H-pyrazol-5-yl acetate (7a)

Yellow solid, yield 95 %. M.p. 110-112 °C. 1H NMR (300MHz, CDCl$_3$): δ 2.12 (s, 3H), 2.19 (s, 3H), 4.84-4.91 (m, 2H), 4.99-5.05 (m, 1H), 7.28-7.38 (m, 6H), 7.42-7.48 (m, 4H). 13C NMR (75MHz, CDCl$_3$): δ 13.4, 20.2, 38.6, 77.2, 106.7, 123.0, 127.4, 127.7, 129.0, 129.3, 137.6, 141.8, 147.5, 167.3. IR (KBr): ν = 3063, 2922, 1792, 1596, 1554, 1502, 1453, 1374, 1168, 757, 697 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{20}$H$_{19}$N$_3$O$_4$Na: 388.1268, found: 388.1270.
4-(1-(2-chlorophenyl)-2-nitroethyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl acetate (7b)

Yellow oil, yield 92 %. 1H NMR (300MHz, CDCl$_3$): δ 2.08 (s, 3H), 2.24 (s, 3H), 4.81-4.88 (m, 1H), 4.96-5.03 (m, 1H), 5.23-5.30 (m, 1H), 7.23-7.49 (m, 9H). 13C NMR (75MHz, CDCl$_3$): δ 13.3, 20.3, 36.0, 75.5, 105.0, 123.1, 127.1, 127.7, 127.9, 129.1, 129.2, 130.4, 134.1, 134.8, 137.6, 142.0, 147.8, 167.3. IR (KBr): ν = 3065, 2924, 1792, 1597, 1555, 1505, 1475, 1375, 1168, 1040, 758, 737, 695 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{20}$H$_{18}$ClN$_3$O$_4$Na: 422.0878, found: 422.0876.

4-(1-(4-chlorophenyl)-2-nitroethyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl acetate (7c)

Yellow oil, yield 94 %. 1H NMR (300MHz, CDCl$_3$): δ 2.15 (s, 3H), 2.17 (s, 3H), 4.79-4.89 (m, 2H), 4.93-5.02 (m, 1H), 7.21-7.46 (m, 9H). 13C NMR (75MHz, CDCl$_3$): δ 13.4, 20.3, 38.2, 77.0, 106.3, 123.0, 127.8, 128.8, 129.1, 129.3, 133.6, 136.2, 137.5, 141.8, 147.3, 167.4. IR (KBr): ν = 3066, 2925, 1792, 1721, 1597, 1556, 1505, 1494, 1435, 1375, 1168, 1093, 1014, 911, 886, 824, 760, 734, 695 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{20}$H$_{18}$ClN$_3$O$_4$Na: 422.0878, found: 422.0876.
3-methyl-4-(2-nitro-1-p-tolylethyl)-1-phenyl-1H-pyrazol-5-yl acetate (7d)

Yellow oil, yield 73 %. 1H NMR (300MHz, CDCl$_3$): δ 2.13 (s, 3H), 2.19 (s, 3H), 2.34 (s, 3H), 4.78-4.89 (m, 2H), 4.94-5.03 (m, 1H), 7.13-7.19 (brs, 4H), 7.40-7.48 (m, 5H). 13C NMR (75MHz, CDCl$_3$): δ 13.4, 20.3, 21.0, 38.4, 77.3, 106.8, 123.0, 127.2, 127.6, 129.2, 129.6, 134.6, 137.3, 137.7, 141.7, 147.5, 167.3. IR (KBr): ν = 3027, 2923, 1792, 1598, 1555, 1434, 1375, 1323, 1168, 1072, 1006, 886, 814, 759, 696 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{21}$H$_{21}$N$_3$O$_4$Na: 402.1424, found: 402.1427.

4-(1-(2-fluorophenyl)-2-nitroethyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl acetate (7e)

Yellow oil, yield 82 %. 1H NMR (300MHz, CDCl$_3$): δ 2.13 (s, 3H), 2.28 (s, 3H), 4.88-4.95 (m, 1H), 5.02-5.12 (m, 2H), 7.06-7.46 (m, 9H). 13C NMR (75MHz, CDCl$_3$): δ 13.2, 20.2, 33.0, 75.8, 105.3, 116.0, 116.3, 123.0, 124.4, 124.5, 127.7, 128.3, 128.4, 129.2, 129.5, 129.6, 137.6, 141.9, 147.4, 158.9, 162.2, 167.1. IR (KBr): ν = 3067, 2925, 1793, 1724, 1597, 1585, 1557, 1505, 1493, 1456, 1435, 1376, 1234, 1168, 1108, 1046, 1006, 912, 885, 808, 759, 735, 695 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{20}$H$_{18}$FN$_3$O$_4$Na: 406.1174, found: 406.1176.
4-(1-(3-fluorophenyl)-2-nitroethyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl acetate (7f)

Yellow oil, yield 88 %. 1H NMR (300MHz, CDCl$_3$): δ 2.14 (s, 3H), 2.18 (s, 3H), 4.81-4.89 (m, 2H), 4.95-5.03 (m, 1H), 6.97-7.08 (m, 5H); 7.28-7.47 (m, 4H). 13C NMR (75MHz, CDCl$_3$): δ 13.3, 20.2, 38.4, 76.9, 106.2, 114.5, 114.6, 114.8, 114.9, 123.1, 127.8, 129.0, 129.3, 130.5, 130.6, 137.5, 140.2, 140.3, 141.8, 147.3, 161.4, 164.6, 167.3. IR (KBr): ν = 3066, 2925, 1792, 1613, 1595, 1555, 1505, 1491, 1375, 1257, 1168, 1047, 1006, 883, 786, 759, 696 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{20}$H$_{18}$FN$_3$O$_4$Na: 406.1174, found: 406.1179.

4-(1-(4-fluorophenyl)-2-nitroethyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl acetate (7g)

Yellow oil, yield 83 %. 1H NMR (300MHz, CDCl$_3$): δ 2.14 (s, 3H), 2.16 (s, 3H), 4.79-4.89 (m, 2H), 4.92-5.01 (m, 1H), 7.01-7.07 (m, 2H), 7.23-7.36 (m, 2H), 7.40-7.49 (m, 5H). 13C NMR (75MHz, CDCl$_3$): δ 13.4, 20.3, 38.1, 77.2, 106.6, 115.7, 116.0, 123.0, 127.8, 129.0, 129.3, 133.4, 133.5, 137.6, 141.7, 160.4, 163.7, 167.4. IR (KBr): ν = 3070, 2925, 1792, 1598, 1555, 1507, 1475, 1434, 1375, 1228, 1167, 1136, 1046, 1006, 912, 886, 836, 804, 760, 733, 696 cm$^{-1}$. HRMS [M+Na$^+$]: calcd for C$_{20}$H$_{18}$FN$_3$O$_4$Na: 406.1174, found: 406.1175.
4-(1-(4-bromophenyl)-2-nitropropyl)-1-(4-chlorophenyl)-3-methyl-1H-pyrazol-5-yl acetate(7h)

White solid, yield 90 %. M.p. 135-136 °C. \(^1 \)H NMR (300MHz, CDCl\(_3\)): \(\delta \) 1.52-1.54 (m, 3H), 2.22 (s, 3H), 2.28 (s, 3H), 4.32-4.37 (m, 1H), 5.24-5.28 (m, 1H), 7.14-7.17 (m, 2H), 7.40 (s, 4H), 7.49-7.52 (m, 2H). \(^{13} \)C NMR (75MHz, CDCl\(_3\)): \(\delta \) 13.5, 19.7, 20.5, 45.4, 84.2, 107.2, 121.8, 124.3, 129.5, 130.0, 132.3, 133.4, 136.9, 147.8, 166.8.

IR (KBr): \(\nu = \) 3097, 3027, 2954, 2924, 2860, 1793, 1730, 1686, 1597, 1579, 1555, 1502, 1467, 1438, 1407, 1374, 1319, 1288, 1166, 1093, 1044, 1012, 910, 886, 833, 733, 691, 649, 503 cm\(^{-1}\). HRMS [M+Na\(^{+}\)]: calcd for C\(_{21}\)H\(_{20}\)ClN\(_3\)O\(_4\)Na: 436.1035, found: 436.1037.

5 X-ray analysis

2a CCDC: 874014
6j CCDC: 861353

7h CCDC: 874398
Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
6 NMR Spectra of 1–3 and 5–7

1H and 13C of 1a
^1H and ^{13}C of 1b
1H and 13C of 2a
1H and 13C of 2b
1H and 13C of 2c
1H and 13C of 3a
1H and 13C of 3b
1H and 13C of 5a
1H and 13C of 5b
\(^1H \) and \(^{13}C \) of 5c
1H and 13C of 5d
^{1}H and ^{13}C of 5e
^{1}H and ^{13}C of 5f
1H and 13C of 5g

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
1H and 13C of 5h
^{1}H and ^{13}C of 5i
1H and 13C of 5j
1H and 13C of 5k
1H and 13C of 5l
1H and 13C of 5m
1H and 13C of 6a
1H and 13C of 6b
1H and 13C of 6c
1H and 13C of 6d
1H and 13C of 6f
1H and 13C of 6g
1H and 13C of 6h
1H and 13C of 6i
1H and 13C of 6j
^1H and ^{13}C of 6k
1H and 13C of 6l
1H and 13C of 6m
1H and 13C of 7a
^1H and ^{13}C of 7b
1H and 13C of 7c
1H and 13C of 7d
1H and 13C of 7e
1H and 13C of 7f
1H and 13C of 7g
^1H and ^{13}C of 7h