Construction of tetrahydro-β-carboline skeleton via Brønsted acid activation of imide carbonyl group: Syntheses of indole alkaloids (±)-harmicine and (±)-10-desbromoarborescidine-A

Selvaraj Mangalaraj and Chinnasamy Ramaraj Ramanathan*

Department of Chemistry, Pondicherry University, Puducherry-605014, India.
crrnath.che@pondiuni.edu.in

Supporting Information

A General Information S2
B Synthesis of 6, 7, 8, 9 S3
C General procedure for the synthesis of imide derivative of tryptamine S6
D General procedure for the synthesis of imide derivative of substituted tryptamine S8
E General procedure for the synthesis of benzindolizino-indolones S15
F General procedure for the synthesis of indoloindolizinones and indoloquinolizinones S23
G Synthesis of (±)-harmicine S30
H Synthesis of (±)-10-desbromoarborescidine-A S31
I Crystal structures S31
J References S32
K Spectral data S34
(A) General Information

Instrumentation. All reactions were performed in oven-dried round bottom flasks. Stainless steel syringes or cannulae were used to transfer air and moisture sensitive liquids. Melting points reported in this paper are uncorrected and were determined using EZ Melt, Stanford Research Systems, USA. Infrared spectra were recorded on Thermo Nicolet 6700 FT-IR Spectrophotometer and are reported in frequency of absorption (cm⁻¹). High resolution mass spectra (HRMS) were recorded on Q-TOF Micro mass spectrometer. ¹H and ¹³C NMR were recorded on Brucker AVANCE 400 spectrometer. NMR spectra for all the samples were measured either in CDCl₃ or DMSO-d₆ or acetone-d₆ a using TMS as an internal standard. The chemical shifts are expressed in δ ppm down field from the signal of internal TMS. Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, dd = doublet of doublet, ddd = doublet of doublet of doublet, td = triplet of doublet, dt = doublet of triplet, sep = septet, m = multiplet), coupling constants in Hertz (Hz), and integration. Trifluromethanesulphonic acid, 4-amino-1-butanol, oxalyl chloride, substituted phenyl hydrazine hydrochloride were purchased from Aldrich; remaining from local products and used without further purification. Column chromatography was performed on Merck silica gel 100-200 mesh, neutral alumina 70-230 mesh and TLC analysis was facilitated using phosphomolybdic acid stain in addition to UV light with Merck 60 F₂₅₄ pre-coated silica plates.

Representative Experimental procedures

(B) Synthesis of 6, 7, 8, 9

2-(4-Hydroxybutyl)isoindoline-1,3-dione (6)\(^1\)

A mixture of finely powdered phthalic anhydride (8.308 g, 56.092 mmol) and 4-amino-1-butanol (5.000 g, 56.092 mmol) were heated at 170 °C with vigorous stirring under nitrogen atmosphere. After 6 h the reaction mixture was cooled to 80 °C and it was poured to 100 mL of ice-cold water. The product was extracted with CHCl\(_3\) (4 x 100 mL), and the combined organic layer was washed with 5% NaHCO\(_3\) solution (3 x 100 mL), and with water (3 x 100 mL). Organic layer was dried over anhydrous Na\(_2\)SO\(_4\), filtered and the solvent was removed under vacuum to give the mixture, which was purified through silica gel column chromatography using ethyl acetate : hexane as eluent (2:5) to give 2-(4-hydroxybutyl)isoindoline-1,3-dione in 92% yield (11.314 g) as colorless solid. (m.p. : 45-46 °C, lit.\(^1\) 47-49 °C); IR (KBr, cm\(^{-1}\)) : 3471, 2938, 1771, 1710, 1399; \(^1\)H-NMR (CDCl\(_3\), 400 MHz) : δ 7.84 (dd, \(J = 5.4, 3.0 \text{ Hz}, 2\text{H}\)), 7.71 (dd, \(J = 5.4, 3.0 \text{ Hz}, 2\text{H}\)), 3.74 (t, \(J = 7.2 \text{ Hz}, 2\text{H}\)), 3.69 (t, \(J = 6.4 \text{ Hz}, 2\text{H}\)), 1.82-1.75 (m, 2H), 1.66-1.59 (m, 2H); \(^13\)C-NMR (CDCl\(_3\), 100 MHz): 168.63, 134.06, 132.23, 123.34, 62.43, 37.84, 29.90, 25.23.

2-(3-(1,3-Dioxan-2-yl)propyl)isoindoline-1,3-dione (7)

To a well stirred solution of oxalyl chloride (2.8 mL, 33.56 mmol) in 20 mL of CH\(_2\)Cl\(_2\), a solution of anhydrous (CH\(_3\))\(_2\)SO (5.7 mL, 80.24 mmol) in 20 mL of CH\(_2\)Cl\(_2\) was added under nitrogen atmosphere at -50 °C at such a rate that temperature was maintained
at -50 °C. Stirring was continued for additional 15 min, then a solution of 2-(4-hydroxybutyl)isoindoline-1,3-dione (5.00 g, 22.82 mmol) in 40 mL of CH2Cl2 was added while keeping the temperature at -50 °C. The reaction mixture was stirred for another 1 h at -50 °C, and triethylamine (21.42 mL, 153.56 mmol) was added. The mixture is allowed to warm to room temperature, and 200 mL of water was added and stirred for 30 min. The organic layer was separated and washed with water, dried over anhydrous Na2SO4, filtered and concentrated in vacuo. The crude 4-(1,3-dioxoisindolin-2-yl)butanal was obtained as viscous oil in 98% yield (4.84 g) and was stored under nitrogen atmosphere and used without further purification for the next step.

Propane-1,3-diol (4.2 g, 55.28 mmol) was added to a solution of 4-(1,3-dioxoisindolin-2-yl)butanal (4.0 g, 18.4 mmol) and p-toluenesulphonic acid monohydrate (0.348 g, 0.92 mmol) in toluene (200 mL) at room temperature. The solution was stirred for 12 h, then diluted with ethyl acetate (200 mL) and washed with saturated NaHCO3 (60 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (4 x 50 mL). The combined organic layers were dried over anhydrous MgSO4 filtered and concentrated under reduced pressure. The residue was purified through column chromatography using silica gel and ethyl acetate : hexane : (1:1) to give 2-(3-(1,3-dioxan-2-yl)propyl)isoindoline-1,3-dione in 84% yield (4.256 g) as colorless solid. (m.p. : 86-87 °C); IR (KBr, cm⁻¹) : 3064, 2949, 2843, 1764, 1715, 1613, 1143; ¹H-NMR (CDCl3, 400 MHz) : 7.82 (dd, J = 5.4, 3.0 Hz, 2H), 7.69 (dd, J = 5.4, 3.0 Hz, 2H), 4.55 (t, J = 5.0 Hz, 1H), 4.07 (dd, J = 5.0, 1.2 Hz, 1H), 4.03 (dd, J = 5.0, 1.2 Hz, 1H), 3.76 (dd, J = 2.4, 1.6 Hz, 1H), 3.73 (d, J = 2.4 Hz, 1H), 3.70 (t, J = 7.2 Hz, 2H), 2.10-1.98 (m, 1H), 1.84-1.76 (m, 2H), 1.65 (d, J = 5.0 Hz, 1H), 1.63-1.61 (m, 1H), 1.30 (d of sep, J = 13.2, 1.2 Hz, 1H); ¹³C-NMR (CDCl3, 100 MHz) : 168.50, 133.97, 132.29, 123.27, 101.69, 66.97, 37.84, 32.49, 25.89, 23.24.

1-(4-Hydroxybutyl)pyrrolidine-2,5-dione (8)

A mixture of finely powdered succinic anhydride (4.491 g, 44.873 mmol) and 4-amino-1-butanol (4.000 g, 44.873 mmol) were heated at 170 °C with vigorous stirring under nitrogen atmosphere. After 6 h the reaction mixture was cooled to room temperature and distilled under reduced pressure to give 1-(4-hydroxybutyl)pyrrolidine-2,5-dione in 70% yield (5.377 g) as
colorless viscous liquid. IR (KBr, cm\(^{-1}\)) : 3448, 2942, 1764, 1695, 1250; \(^1\)H-NMR (CDCl\(_3\), 400 MHz) : \(\delta\) 3.67-3.62 (m, 2H), 3.56-3.51 (m, 2H), 2.69-2.68 (m, 4H), 1.69-1.61 (m, 2H), 1.58-1.51 (m, 2H); \(^1\)C-NMR (CDCl\(_3\), 100 MHz) : 177.44, 62.16, 38.54, 29.69, 28.17, 24.24.

1-(3-(1,3-Dioxan-2-yl)propyl)pyrrolidine-2,5-dione (9)

To a well stirred solution of oxalyl chloride (2.9 mL, 34.36 mmol) in 20 mL of CH\(_2\)Cl\(_2\), a solution of anhydrous (CH\(_3\))\(_2\)SO (5.8 mL, 82.16 mmol) in 20 mL of CH\(_2\)Cl\(_2\) was added under nitrogen atmosphere at -50 °C at such a rate that temperature was maintained at -50 °C. Stirring was continued for additional 15 min, then a solution of 1-(4-hydroxybutyl)pyrrolidine-2,5-dione (4.00 g, 23.37 mmol) in 40 mL of CH\(_2\)Cl\(_2\) was added while keeping the temperature at -50 °C. The reaction mixture was stirred for another 1 h at -50 °C, and triethylamine (21.93 mL, 157.23 mmol) was added. The mixture is allowed to warm to room temperature, and 200 mL of water was added and stirred for 30 min. The organic layer was separated and washed with water, dried over anhydrous Na\(_2\)SO\(_4\), filtered and concentrated in vacuo. The crude 4-(2,5-dioxopyrrolidin-1-yl)butanal was obtained as viscous oil in 98% yield (3.87 g) and was stored under nitrogen atmosphere and used without further purification for the next step.

Propane-1,3-diol (4.73 g, 62.15 mmol) was added to a solution of 4-(2,5-dioxopyrrolidin-1-yl)butanal (3.5 g, 20.69 mmol) and p-toluenesulphonic acid monohydrate (0.196 g, 1.0344 mmol) in toluene (200 mL) at room temperature. The solution was stirred for 12 h, then diluted with ethyl acetate (200 mL) and washed with saturated NaHCO\(_3\) (60 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (4 x 50 mL). The combined organic layers were dried over anhydrous MgSO\(_4\), filtered and concentrated under reduced pressure. The residue was purified through column chromatography using silica gel and ethyl acetate : hexane as eluent (1:1) to give 1-(3-(1,3-dioxan-2-yl)propyl)pyrrolidine-2,5-dione in 84% yield (4.256 g) as colorless solid. (m.p. : 112-113 °C); IR (KBr, cm\(^{-1}\)) : 2861, 1763, 1695, 1238, 1145; \(^1\)H-NMR (CDCl\(_3\), 400 MHz) : \(\delta\) 4.51 (t, \(J = 5.0\) Hz, 1H), 4.05 (ddd, \(J = 12.4, 5.0, 1.2\) Hz, 2H), 3.72 (td, \(J = 12.4, 2.4\) Hz, 2H), 3.50 (t, \(J = 7.2\) Hz, 2H), 2.66 (s, 4H), 2.09-1.97 (m, 1H), 1.73-1.64 (m, 2H), 1.56 (dd, \(J = 8.8, 5.0\) Hz, 2H), 1.30 (d of sep, \(J = 13.5, 1.2\) Hz, 1H); \(^1\)C-NMR (CDCl\(_3\), 100 MHz) : 177.17, 101.47, 66.82, 38.50, 32.28, 28.11, 25.72, 22.20.
General procedure for the synthesis of imide derivative of tryptamine

\[
\text{Phthalic anhydride (2.773 g, 18.725 mmol)} + \text{Tryptamine (3.000 g, 18.725 mmol)} \rightarrow \text{2-(2-(1H-Indol-3-yl)ethyl)isoindoline-1,3-dione (1a)}^{2}
\]

A suspension of phthalic anhydride (2.773 g, 18.725 mmol) in toluene in an oven dried round bottom flask fitted with Dean-Stark set up was heated at reflux until complete dissolution of the anhydride and no additional water was removed. To this solution was added tryptamine (3.000 g, 18.725 mmol) and refluxing was continued until the water evolution was completed (12 h). Reaction mixture was concentrated under reduced pressure to give a residue which was purified through neutral alumina column chromatography using ethyl acetate : hexane as eluent (1:4) to give 2-(2-(1H-indol-3-yl)ethyl)isoindoline-1,3-dione in 78% yield (4.240 g) as yellow solid. (m.p. : 166-167 °C, lit.\(^2\) 166-168 °C); IR (KBr, cm\(^{-1}\)) : 3383, 3044, 2942, 2858, 1767, 1703, 1233; \(^1\)H-NMR (CDCl\(_3\), 400 MHz) : δ 8.05 (br s, 1H), 7.83 (dd, \(J = 5.4, 3.0 \text{ Hz}, 2H\)), 7.74 (dt, \(J = 8.0, 0.8 \text{ Hz}, 1H\)), 7.70 (dd, \(J = 5.4, 3.0 \text{ Hz}, 2H\)), 7.34 (dt, \(J = 7.6, 0.8 \text{ Hz}, 1H\)), 7.19 (td, \(J = 7.6, 1.2 \text{ Hz}, 1H\)), 7.13 (td, \(J = 8.0, 1.2 \text{ Hz}, 1H\)), 7.08 (d, \(J = 2.4 \text{ Hz}, 1H\)), 4.04-3.99 (m, 2H), 3.19-3.15 (m, 2H); \(^1\)C-NMR (CDCl\(_3\), 100 MHz) : 168.51, 136.37, 134.00, 132.34, 127.55, 123.31, 122.27, 122.14, 119.66, 119.01, 112.59, 111.24, 38.66, 24.60.

\[
\text{1-(2-(1H-Indol-3-yl)ethyl)pyrrolidine-2,5-dione (1i)}^{3}
\]

A suspension of succinic anhydride (1.874 g, 18.725 mmol) in toluene in an oven dried round bottom flask fitted with Dean-Stark set up was heated at reflux until complete dissolution of the anhydride and no additional water was removed. To this solution was added tryptamine (3.000 g, 18.725 mmol) and refluxing was continued until the water evolution was completed (12 h). Reaction mixture was concentrated under reduced pressure to give a residue which was purified through neutral alumina column chromatography using ethyl acetate : hexane as eluent (1:4) to give 1-(2-(1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione in 71% yield (3.211 g) as tan solid. (m.p. : 166-167 °C, lit.\(^3\) 163-166 °C); IR (KBr, cm\(^{-1}\)) : 3265, 3052, 2925, 1764, 1694, 1401, 1339; \(^1\)H-NMR (CDCl\(_3\), 400 MHz) : δ 8.04 (br s, 1H), 7.66 (d, \(J = 8.0 \text{ Hz}, 1H\), 7.45 (d, \(J = 2.4 \text{ Hz}, 1H\)), 7.40-7.36 (m, 2H), 7.19-7.15 (m, 2H), 7.03 (m, 2H), 4.03-3.97 (m, 2H), 3.20-3.16 (m, 2H); \(^1\)C-NMR (CDCl\(_3\), 100 MHz) : 168.54, 136.37, 134.00, 132.34, 127.55, 123.31, 122.27, 122.14, 119.66, 119.01, 112.59, 111.24, 38.66, 24.60.
S7
7.34 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 1.9 Hz, 1H), 3.83 (t, J = 7.6 Hz, 2H), 3.06 (t, J = 7.6 Hz, 2H), 2.61 (s, 4H); 13C-NMR (CDCl3, 100 MHz) : 177.38, 136.29, 127.64, 122.27, 122.23, 119.67, 118.77, 112.41, 111.30, 39.65, 28.29, 23.45.

1-(2-(1H-Indol-3-yl)ethyl)piperdine-2,6-dione (1r)

A suspension of glutaric anhydride (2.136 g, 18.725 mmol) in toluene in an oven dried round bottom flask fitted with Dean-Stark set up was heated at reflux until complete dissolution of the anhydride and no additional water was removed. To this solution was added tryptamine (3.000 g, 18.725 mmol) and refluxing was continued until the water evolution was completed (12 h). Reaction mixture was concentrated under reduced pressure to give a residue which was purified through neutral alumina column chromatography using ethyl acetate : hexane as eluent (1:4) to give 1-(2-(1H-indol-3-yl)ethyl)piperdine-2,6-dione in 67% yield (3.215 g) as tan solid. (m.p. : 174-175 °C), IR (KBr, cm⁻¹) : 3333, 2971, 2958, 1718, 1665, 1456, 1354; ¹H-NMR (CDCl3, 400 MHz) : δ 8.02 (br s, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.20-7.12 (m, 2H), 7.06 (d, J = 1.7 Hz, 1H), 4.07 (t, J = 8.0 Hz, 2H), 2.98 (t, J = 8.0 Hz, 2H), 2.61 (t, J = 6.4 Hz, 4H), 1.87 (p, 6.4 Hz, 2H); ¹³C-NMR (CDCl3, 100 MHz) : 172.67, 136.27, 127.78, 122.25, 122.13, 119.56, 119.25, 113.06, 111.17, 40.45, 32.99, 23.84, 17.26.

2-(2-(1H-Indol-3-yl)ethyl)hexahydro-1H-isoindole-1,3(2H)-dione (1q)

A suspension of hexahydrophthalic anhydride (2.887 g, 18.725 mmol) in toluene in an oven dried round bottom flask fitted with Dean-Stark set up was heated at reflux until complete dissolution of the anhydride and no additional water was removed. To this solution was added tryptamine (3.000 g, 18.725 mmol) and refluxing was continued until the water evolution was completed (12 h). Reaction mixture was concentrated under reduced pressure to give a residue which was purified through neutral alumina column chromatography using ethyl acetate : hexane as eluent (1:4) to give 2-(2-(1H-indol-3-yl)ethyl)hexahydro-1H-isoindole-1,3(2H)-dione in 63% yield (3.496 g) as pale orange solid. (m.p. : 145-146 °C); IR (KBr, cm⁻¹) : 3364, 2944, 2860, 1766, 1694, 1401, 1341; ¹H-NMR (CDCl3, 400 MHz) : δ 8.02 (br s, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.15-7.11 (m, 1H), 7.07 (d, J = 1.8 Hz, 1H), 3.82 (t, J = 7.6 Hz, 2H), 3.07
(t, J = 7.6 Hz, 2H), 2.78-2.72 (m, 2H), 1.79-1.77 (m, 2H), 1.64-1.61 (m, 2H), 1.42-1.31 (m, 4H); \(^{13}\)C-NMR (CDCl\(_3\), 100 MHz) : 179.98, 136.25, 127.63, 122.28, 122.13, 119.55, 118.93, 112.17, 111.21, 39.73, 39.12, 23.69, 23.37, 21.62.

(D) General procedure for the synthesis of imide derivative of substituted tryptamine

\[\text{R} \quad \text{N} \quad \text{HCl} \]

\[\text{O} \quad \text{O} \quad \text{H} \quad \text{O} \quad \text{O} \]

\[\text{N} \quad \text{H} \quad \text{N} \]

\[\text{R} = \text{H, OMe, Me} \quad \text{F, Cl, Br} \]

\[1b - 1h \quad \text{and} \quad 1j - 1p \]

Where, X = 1,2-C\(_6\)H\(_4\) = 7

X = -CH\(_2\)CH\(_2\) = 9

2-(2-(5-Methoxy-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (1f)

A mixture of (4-methoxyphenyl)hydrazine hydrochloride (349 mg, 1.998 mmol) and 2-(3-(1,3-dioxan-2-yl)propyl)isoindoline-1,3-dione (550 mg, 1.998 mmol) in 100 mL of 4% H\(_2\)SO\(_4\) was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO\(_3\). The tryptamine product was extracted with CH\(_2\)Cl\(_2\) (4 x 50 mL). The combined organic layer was dried over anhydrous Na\(_2\)SO\(_4\), filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 2-(2-(5-methoxy-1H-indol-3-yl)ethyl)isoindoline-1,3-dione in 67% yield (429 mg) as yellow solid. (m.p. : 160-161 °C); IR (KBr, cm\(^{-1}\)) : 3390, 2999, 2939, 2835, 1765, 1704, 1579, 1398, 1211, 1097; \(^1\)H-NMR (CDCl\(_3\), 400 MHz) : δ 7.95 (br s, 1H), 7.83 (dd, J = 5.4, 3.0 Hz, 2H), 7.70 (dd, J = 5.4, 3.0 Hz, 2H), 7.22 (d, J = 8.8 Hz, 1H), 7.16 (d, J = 2.4 Hz, 1H), 7.06 (d, J = 2.4 Hz, 1H), 6.83 (dd, J = 8.8, 2.4 Hz, 1H), 4.02-3.98 (m, 2H), 3.86 (s, 3H), 3.14-3.10 (m, 2H); \(^{13}\)C-NMR (CDCl\(_3\), 100 MHz) : 168.39, 154.08, 133.87, 132.19, 131.30, 127.81, 123.16, 122.74, 112.57, 112.20, 111.89, 100.31, 55.82, 38.44, 24.50.

2-(2-(7-Methyl-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (1g)

A mixture of o-tolylhydrazine hydrochloride (317 mg, 1.998 mmol) and 2-(3-(1,3-dioxan-2-yl)propyl)isoindoline-1,3-dione (550 mg, 1.998 mmol) in 100 mL of 4% H\(_2\)SO\(_4\) was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO\(_3\). The tryptamine product was extracted with
CH$_2$Cl$_2$ (4 x 50 mL). The combined organic layer was dried over anhydrous Na$_2$SO$_4$, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 2-(2-(7-methyl-1H-indol-3-yl)ethyl)isoindoline-1,3-dione in 64% yield (389 mg) as orange solid. (m.p. : 208-209 °C); IR (KBr, cm$^{-1}$) : 3391, 3045, 2931, 2857, 1760, 1703, 1438, 1072; 1H-NMR (CDCl$_3$, 400 MHz) : δ 7.95 (br s, 1H), 7.83 (dd, $J = 5.4$, 3.0 Hz, 2H), 7.70 (dd, $J = 5.4$, 3.0 Hz, 2H), 7.60 (d, $J = 7.6$ Hz, 1H), 7.11 (d, $J = 2.0$ Hz, 1H), 7.06 (t, $J = 7.6$ Hz, 1H), 6.99 (d, $J = 7.0$ Hz, 1H), 4.03-3.99 (m, 2H), 3.15 (t, $J = 7.6$ Hz, 2H), 2.48 (s, 3H); 13C-NMR (CDCl$_3$, 100 MHz) : 168.52, 135.97, 134.00, 132.35, 127.08, 123.32, 122.82, 121.86, 120.39, 119.90, 116.76, 113.08, 38.68, 24.75, 16.71.

2-(2-(5,7-Dimethyl-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (1h)

A mixture of (2,4-dimethylphenyl)hydrazine hydrochloride (345 mg, 1.998 mmol) and 2-(3-(1,3-dioxan-2-yl)propyl)isoindoline-1,3-dione (550 mg, 1.998 mmol) in 100 mL of 4% H$_2$SO$_4$ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO$_3$. The tryptamine product was extracted with CH$_2$Cl$_2$ (4 x 50 mL). The combined organic layer was dried over anhydrous Na$_2$SO$_4$, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 2-(2-(5,7-dimethyl-1H-indol-3-yl)ethyl)isoindoline-1,3-dione in 59% yield (375 mg) as pale brown solid. (m.p. : 221-222 °C); IR (KBr, cm$^{-1}$) : 3380, 2919, 2856, 1766, 1705, 1608, 1442, 1086; 1H-NMR (CDCl$_3$, 400 MHz) : δ 7.87 (br s, 1H), 7.83 (dd, $J = 5.4$, 3.0 Hz, 2H), 7.70 (dd, $J = 5.4$, 3.0 Hz, 2H), 7.34 (s, 1H), 7.06 (d, $J = 1.7$ Hz, 1H), 6.82 (s, 1H), 3.99 (t, $J = 7.6$ Hz, 2H), 3.12 (t, $J = 7.6$ Hz, 2H), 2.43 (s, 3H), 2.40 (s, 3H); 13C-NMR (CDCl$_3$, 100 MHz) : 168.53, 134.27, 133.96, 132.35, 129.12, 127.33, 124.54, 123.27, 122.02, 120.05, 116.25, 112.55, 38.79, 24.73, 21.54, 16.64.

2-(2-(5-Fluoro-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (1b)

A mixture of (4-fluorophenyl)hydrazine hydrochloride (325 mg, 1.998 mmol) and 2-(3-(1,3-dioxan-2-yl)propyl)isoindoline-1,3-dione (550 mg, 1.998 mmol) in 100 mL of 4% H$_2$SO$_4$ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO$_3$. The tryptamine product was extracted with CH$_2$Cl$_2$ (4 x 50 mL). The combined organic layer was dried over anhydrous Na$_2$SO$_4$, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 2-(2-(5-fluoro-1H-indol-3-yl)ethyl)isoindoline-1,3-dione in 64% yield (389 mg) as orange solid. (m.p. : 208-209 °C); IR (KBr, cm$^{-1}$) : 3391, 3045, 2931, 2857, 1760, 1703, 1438, 1072; 1H-NMR (CDCl$_3$, 400 MHz) : δ 7.95 (br s, 1H), 7.83 (dd, $J = 5.4$, 3.0 Hz, 2H), 7.70 (dd, $J = 5.4$, 3.0 Hz, 2H), 7.60 (d, $J = 7.6$ Hz, 1H), 7.11 (d, $J = 2.0$ Hz, 1H), 7.06 (t, $J = 7.6$ Hz, 1H), 6.99 (d, $J = 7.0$ Hz, 1H), 4.03-3.99 (m, 2H), 3.15 (t, $J = 7.6$ Hz, 2H), 2.48 (s, 3H); 13C-NMR (CDCl$_3$, 100 MHz) : 168.52, 135.97, 134.00, 132.35, 127.08, 123.32, 122.82, 121.86, 120.39, 119.90, 116.76, 113.08, 38.68, 24.75, 16.71.

Electronic Supplementary Material (ESI) for RSC Advances

This journal is © The Royal Society of Chemistry 2012
temperature and treated with aqueous NaHCO₃. The tryptamine product was extracted with CH₂Cl₂ (4 x 50 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 2-(2-(5-fluoro-1H-indol-3-yl)ethyl)isoindoline-1,3-dione in 75% yield (462 mg) as pale yellow solid. (m.p. : 125-126 °C, lit.⁶ 122-124 °C); IR (KBr, cm⁻¹) : 3390, 3048, 2934, 1766, 1702, 1448, 1402, 1247, 716; ¹H-NMR (CDCl₃, 400 MHz) : δ 8.04 (br s, 1H), 7.83 (dd, J = 5.4, 3.0 Hz, 2H), 7.70 (dd, J = 5.4, 3.0 Hz, 2H), 7.34 (dd, J = 9.6, 2.4 Hz, 1H), 7.24 (t, J = 4.4 Hz, 1H), 7.12 (d, J = 2.0 Hz, 1H), 6.91 (td, J = 9.0, 2.4 Hz, 1H), 3.98 (t, J = 7.6 Hz, 2H), 3.10 (t, J = 7.6 Hz, 2H); ¹³C-NMR (CDCl₃, 100 MHz) : 168.33, 157.81, 133.90, 132.68, 132.12, 127.82, 123.79, 123.19, 112.63, 111.72, 110.52, 103.75, 38.33, 24.33.

2-(2-(5-Chloro-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (1c)

A mixture of (4-chlorophenyl)hydrazine hydrochloride (358 mg, 1.998 mmol) and 2-(3-(1,3-dioxan-2-yl)propyl)isoindoline-1,3-dione (550 mg, 1.998 mmol) in 100 mL of 4% H₂SO₄ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO₃. The tryptamine product was extracted with CH₂Cl₂ (4 x 50 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 2-(2-(5-chloro-1H-indol-3-yl)ethyl)isoindoline-1,3-dione in 62% yield (402 mg) as pale yellow solid. (m.p. : 195-196 °C); IR (KBr, cm⁻¹) : 3340, 1769, 1702, 1610, 1450, 1402, 1238, 721; ¹H-NMR (CDCl₃, 400 MHz) : δ 8.05 (br s, 1H), 7.83 (dd, J = 5.4, 3.0 Hz, 2H), 7.70 (dd, J = 5.4, 3.0 Hz, 2H), 7.64 (d, J = 1.3 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.13-7.11 (m, 2H), 3.98 (t, J = 7.6 Hz, 2H), 3.11 (t, J = 7.6 Hz, 2H); ¹³C-NMR (CDCl₃, 100 MHz) : 168.47, 134.67, 134.06, 132.24, 128.70, 125.46, 123.56, 123.79, 123.19, 112.63, 111.72, 110.52, 103.75, 103.75, 38.56, 24.35.

2-(2-(5-Bromo-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (1d)
A mixture of (4-bromophenyl)hydrazine hydrochloride (430 mg, 1.943 mmol) and 2-(3-(1,3-dioxan-2-yl)propyl)isoindoline-1,3-dione (535 mg, 1.943 mmol) in 100 mL of 4% H₂SO₄ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO₃. The tryptamine product was extracted with CH₂Cl₂ (4 x 50 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 2-(2-(5-bromo-1H-indol-3-yl)ethyl)isoindoline-1,3-dione in 72% yield (517 mg) as pale orange solid. (m.p.: 212-213 °C); IR (KBr, cm⁻¹): 3318, 3048, 2934, 2860, 1764, 1695, 1458, 1389, 1230, 719; ¹H-NMR (CDCl₃, 400 MHz): δ 8.05 (br s, 1H), 7.82 (dd, J = 5.4, 3.0 Hz, 2H), 7.79-7.78 (m, 1H), 7.70 (dd, J = 5.4, 3.0 Hz, 2H), 7.23 (dd, J = 8.8, 1.6 Hz, 1H), 7.19 (dd, J = 8.8, 0.4 Hz, 1H), 7.09 (d, J = 2.3 Hz, 1H), 4.00-3.96 (m, 2H), 3.13-3.09 (m, 2H); ¹³C-NMR (DMSO-d₆, 100 MHz): 167.75, 134.82, 134.33, 131.52, 128.90, 124.77, 123.86, 122.95, 113.42, 111.00, 110.53, 38.16, 23.52.

2-(2-(7-Fluoro-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (1e)

A mixture of (2-fluorophenyl)hydrazine hydrochloride (325 mg, 1.998 mmol) and 2-(3-(1,3-dioxan-2-yl)propyl)isoindoline-1,3-dione (550 mg, 1.998 mmol) in 100 mL of 4% H₂SO₄ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO₃. The tryptamine product was extracted with CH₂Cl₂ (4 x 50 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 2-(2-(5-fluoro-1H-indol-3-yl)ethyl)isoindoline-1,3-dione in 68% yield (419 mg) as orange solid. (m.p.: 199-200 °C); IR (KBr, cm⁻¹): 3358, 2944, 1768, 1704, 1429, 1228, 715; ¹H-NMR (CDCl₃, 400 MHz): δ 8.24 (br s, 1H), 7.83 (dd, J = 5.4, 3.0 Hz, 2H), 7.70 (dd, J = 5.4, 3.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 1H), 7.11 (d, J = 2.4 Hz, 1H), 7.01 (td, J = 8.0, 4.8 Hz, 1H), 6.91-6.86 (m, 1H), 4.02-3.98 (m, 2H), 3.16-3.13 (m, 2H); ¹³C-NMR (CDCl₃, 100 MHz): 168.48, 149.69 (d, J = 242.3 Hz, 1C), 134.05, 132.26, 131.31 (d, J = 5.2 Hz, 1C), 124.68 (d, J = 13.2 Hz, 1C), 123.34, 122.85, 119.90 (d, J = 6.3 Hz, 1C), 114.76 (d, J = 3.5 Hz, 1C), 113.41 (d, J = 2.2 Hz, 1C), 107.08 (d, J = 15.9 Hz, 1C), 38.52, 24.57.
1-(2-(5-Methoxy-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (1n)**

A mixture of (4-methoxyphenyl)hydrazine hydrochloride (231 mg, 1.320 mmol) and 1-(3-(1,3-dioxan-2-yl)propyl)pyrrolidine-2,5-dione (300 mg, 1.320 mmol) in 100 mL of 4% H$_2$SO$_4$ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO$_3$. The tryptamine product was extracted with CH$_2$Cl$_2$ (4 x 50 mL). The combined organic layer was dried over anhydrous Na$_2$SO$_4$, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 1-(2-(5-methoxy-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione in 61% yield (219 mg) as pale tan solid. (m.p.: 169-170°C); IR (KBr, cm$^{-1}$): 3424, 2951, 1761, 1696, 1487, 1404, 1227, 1153; 1H-NMR (CDCl$_3$, 400 MHz): δ 7.98 (br s, 1H), 7.28 (d, $J = 6.1$ Hz, 1H), 7.18 (d, $J = 2.4$ Hz, 1H), 7.09 (d, $J = 2.1$ Hz, 1H), 6.89 (dd, $J = 8.8$, 2.4 Hz, 1H), 3.93 (s, 3H), 3.85 (t, $J = 8.0$ Hz, 2H), 3.05 (t, $J = 8.0$ Hz, 2H), 2.67 (s, 4H); 13C-NMR (CDCl$_3$, 100 MHz): 177.31, 154.08, 131.24, 127.86, 122.49, 112.91, 111.91, 100.24, 55.87, 39.29, 28.18, 23.40.

1-(2-(7-Methyl-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (1o)**

A mixture of o-tolylhydrazine hydrochloride (349 mg, 2.200 mmol) and 1-(3-(1,3-dioxan-2-yl)propyl)pyrrolidine-2,5-dione (500 mg, 2.200 mmol) in 100 mL of 4% H$_2$SO$_4$ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO$_3$. The tryptamine product was extracted with CH$_2$Cl$_2$ (4 x 50 mL). The combined organic layer was dried over anhydrous Na$_2$SO$_4$, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 1-(2-(7-methyl-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione in 66% yield (372 mg) as colorless solid. (m.p.: 172-173°C); IR (KBr, cm$^{-1}$): 3272, 1770, 1694, 1405, 1343; 1H-NMR (CDCl$_3$, 400 MHz): δ 7.97 (br s, 1H), 7.51 (d, $J = 8.0$ Hz, 1H), 7.09 (d, $J = 2.2$ Hz, 1H), 7.06 (t, $J = 8.0$ Hz, 1H), 6.99 (d, $J = 7.2$ Hz, 1H), 3.85-3.81 (m, 2H), 3.07-3.03 (m, 2H), 2.62 (s, 4H), 2.47 (s, 3H); 13C-NMR (CDCl$_3$, 100 MHz): 177.39, 135.88, 127.15, 122.76, 121.96, 120.45, 119.86, 116.47, 112.83, 39.67, 28.27, 23.58, 16.69.

1-(2-(5,7-Dimethyl-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (1p)**

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
A mixture of (2,4-dimethylphenyl)hydrazine hydrochloride (380 mg, 2.200 mmol) and 1-(3-(1,3-dioxan-2-yl)propyl)pyrrolidine-2,5-dione (500 mg, 2.200 mmol) in 100 mL of 4% H₂SO₄ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO₃. The tryptamine product was extracted with CH₂Cl₂ (4 x 50 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 1-(2-(5,7-dimethyl-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione in 55% yield (327 mg) as pale yellow solid. (m.p. : 192-193 °C); IR (KBr, cm⁻¹) : 3348, 3125, 2860, 1769, 1691, 1405, 1264; ¹H-NMR (CDCl₃, 400 MHz) : δ 7.84 (br s, 1H), 7.28 (s, 1H), 7.05 (d, J = 2.2 Hz, 1H), 6.83 (s, 1H), 3.83-3.79 (m, 2H), 3.03-3.00 (m, 2H), 2.62 (s, 4H), 2.43 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz) : 177.26, 134.09, 128.98, 127.27, 124.42, 121.95, 119.97, 115.88, 112.25, 39.58, 28.15, 23.47, 21.45, 16.51.

1-(2-(5-Fluoro-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (1j)

A mixture of (4-fluorophenyl)hydrazine hydrochloride (122 mg, 0.748 mmol) and 1-(3-(1,3-dioxan-2-yl)propyl)pyrrolidine-2,5-dione (170 mg, 0.748 mmol) in 100 mL of 4% H₂SO₄ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO₃. The tryptamine product was extracted with CH₂Cl₂ (4 x 50 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 1-(2-(5-fluoro-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione in 73% yield (142 mg) as tan solid. (m.p. : 136-137 °C); IR (KBr, cm⁻¹) : 3344, 2935, 2860, 1773, 1697, 1486, 1404, 1260, 1152, 805; ¹H-NMR (CDCl₃, 400 MHz) : δ 8.14 (br s, 1H), 7.30-7.23 (m, 2H), 7.10 (d, J = 1.4 Hz, 1H), 6.92 (td, J = 9.0, 2.2 Hz, 1H), 3.79 (t, J = 7.6 Hz, 2H), 2.99 (t, J = 7.6 Hz, 2H), 2.63 (s, 4H); ¹³C-NMR (CDCl₃, 100 MHz) : 177.35, 157.96 (d, J = 234.0 Hz, 1C), 132.77, 128.03 (d, J = 9.0 Hz, 1C), 124.03, 112.60 (d, J = 4.0 Hz, 1C), 111.97 (d, J = 9.0 Hz, 1C), 110.66 (d, J = 27.0 Hz, 1C), 103.64 (d, J = 23.0 Hz, 1C), 39.46, 28.27, 23.38.

1-(2-(5-Chloro-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (1k)
A mixture of (4-chlorophenyl)hydrazine hydrochloride (197 mg, 1.100 mmol) and 1-(3-(1,3-dioxan-2-yl)propyl)pyrrolidine-2,5-dione (250 mg, 1.100 mmol) in 100 mL of 4% H$_2$SO$_4$ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO$_3$. The tryptamine product was extracted with CH$_2$Cl$_2$ (4 x 50 mL). The combined organic layer was dried over anhydrous Na$_2$SO$_4$, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 1-(2-(5-chloro-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione in 71% yield (216 mg) as pale yellow solid. (m.p.: 145-146 °C); IR (KBr, cm$^{-1}$): 3420, 2922, 1763, 1686, 1462, 1409, 1267; 1H-NMR (CDCl$_3$, 400 MHz): δ 8.20 (br s, 1H), 7.59 (d, $J = 1.9$ Hz, 1H), 7.28 (d, $J = 0.8$ Hz, 1H), 7.14 (dd, $J = 8.6$, 1.9 Hz, 1H), 7.10 (d, $J = 2.2$ Hz, 1H), 3.82 (t, $J = 7.6$ Hz, 2H), 3.03 (t, $J = 7.6$ Hz, 2H), 2.64 (s, 4H); 13C-NMR (CDCl$_3$, 100 MHz): 177.39, 134.58, 128.77, 125.38, 123.67, 122.52, 118.14, 112.38, 112.28, 39.59, 28.24, 23.22.

1-(2-(5-Bromo-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (1l)

A mixture of (4-bromophenyl)hydrazine hydrochloride (171 mg, 0.770 mmol) and 1-(3-(1,3-dioxan-2-yl)propyl)pyrrolidine-2,5-dione (175 mg, 0.770 mmol) in 100 mL of 4% H$_2$SO$_4$ was heated at reflux for 12 h. The reaction mixture was cooled to room temperature and treated with aqueous NaHCO$_3$. The tryptamine product was extracted with CH$_2$Cl$_2$ (4 x 50 mL). The combined organic layer was dried over anhydrous Na$_2$SO$_4$, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 1-(2-(5-bromo-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione in 53% yield (131 mg) as tan solid. (m.p.: 138-139 °C); IR (KBr, cm$^{-1}$): 3318, 2919, 2854, 1767, 1699, 1336, 666; 1H-NMR (CDCl$_3$, 400 MHz): δ 8.28 (br s, 1H), 7.71 (s, 1H), 7.25-7.18 (m, 2H), 7.04 (s, 1H), 3.82 (t, $J = 7.6$ Hz, 2H), 2.99 (t, $J = 7.2$ Hz, 2H), 2.61 (s, 4H); 13C-NMR (CDCl$_3$, 100 MHz): 177.43, 134.84, 129.42, 124.97, 124.51, 121.15, 112.86, 112.80, 112.13, 39.65, 28.22, 23.17.

1-(2-(7-Fluoro-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (1m)

A mixture of (2-fluorophenyl)hydrazine hydrochloride (122 mg, 0.748 mmol) and 1-(3-(1,3-dioxan-2-yl)propyl)pyrrolidine-2,5-dione (170 mg, 0.748 mmol) in 100 mL of 4% H$_2$SO$_4$ was heated at reflux for 12
The reaction mixture was cooled to room temperature and treated with aqueous NaHCO₃. The tryptamine product was extracted with CH₂Cl₂ (4 x 50 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The residue was purified through neutral alumina column chromatography using ethyl acetate : hexane (1:4) as eluent to give 1-(2-(7-fluoro-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione in 69% yield (98 mg) as pale yellow solid. (m.p. : 170-171 °C); IR (KBr, cm⁻¹) : 3282, 2943, 1770, 1699, 1448, 1336, 796; ¹H-NMR (CDCl₃, 400 MHz) : δ 8.29 (br s, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 2.3 Hz, 1H), 7.03 (td, J = 8.0, 4.8 Hz, 1H), 6.92-6.87 (m, 1H), 3.84-3.80 (m, 2H), 3.06-3.03 (m, 2H), 2.62 (s, 4H); ¹³C-NMR (CDCl₃, 100 MHz) : 177.33, 149.73 (d, J = 243.0 Hz, 1C), 131.39 (d, J = 5.0 Hz, 1C), 124.65 (d, J = 13.0 Hz, 1C), 122.93, 119.97 (d, J = 6.0 Hz, 1C), 114.57 (d, J = 4.0 Hz, 1C), 113.30 (d, J = 2.0 Hz, 1C), 107.08 (d, J = 16.0 Hz, 1C), 39.51, 28.29, 23.46.

(E) General procedure for the synthesis of benzindolizino indolones.

13b-Hydroxy-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one (2)

A 50 mL two neck round bottom flask fitted with condenser and rubber septum was charged with 2-(2-(1H-indol-3-yl)ethyl)isoindoline-1,3-dione (110 mg, 0.379 mmol), 4Å molecular sieves (50 mg), magnetic stir bar and anhydrous dichloromethane (20 mL) under nitrogen atmosphere. To this mixture was added trifluoromethanesulfonic acid (335 µL, 3.789 mmol) with stirring at room temperature. After 12 h the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate as eluent to give 13b-hydroxy-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one in 81% yield (86 mg) as colorless solid. (m.p. : 163-
164 °C); IR (KBr, cm\(^{-1}\)) : 3350, 3226, 2924, 1682, 1409, 1300; \(^1\)H-NMR (DMSO-\(d_6\), 400 MHz) : \(\delta\) 11.51 (br s, 1H), 8.32 (d, \(J = 7.6\) Hz, 1H), 7.72 (t, \(J = 7.6\) Hz, 1H), 7.68 (d, \(J = 7.6\) Hz, 1H), 7.55 (t, \(J = 7.2\) Hz, 1H), 7.42 (d, \(J = 7.6\) Hz, 1H), 7.36 (d, \(J = 8.4\) Hz, 1H), 7.26 (s, 1H), 7.13-7.09 (m, 1H), 6.98 (t, \(J = 7.2\) Hz, 1H), 4.41 (dd, \(J = 13.0\), 5.6 Hz, 1H), 3.47 (td, \(J = 12.1\), 4.4 Hz, 1H), 2.79 (dd, \(J = 15.6\), 4.4 Hz, 1H), 2.73-2.65 (m, 1H); \(^{13}\)C-NMR (DMSO-\(d_6\), 100 MHz) : 166.70, 147.07, 136.56, 133.14, 132.64, 130.38, 129.76, 125.64, 123.78, 122.92, 122.42, 119.12, 118.99, 111.71, 109.06, 84.23, 35.10, 21.63; HRMS (ESI) (m/z) : [M+Na]\(^+\)

Found 313.0958; Calculated 313.0953; for C\(_{18}\)H\(_{14}\)N\(_2\)O\(_2\)Na.

\[
\text{NNHH} \quad \text{OO} \\
\quad \text{RR} \\
\begin{array}{c}
\text{11.. TTffOOHH ((1100 eeqquuiivv))} \\
\text{CCHH22CCll22,, 44AA MMSS} \\
\text{22.. NNaaHHCCOO33} \\
\text{33.. NNaaBBHH44//CCFF33CCOOOOHH}
\end{array}
\]

\[
\quad \text{NNHH} \quad \text{RR} \\
\quad \text{NN} \\
\begin{array}{c}
\text{OO} \\
\text{RR == HH,, MMee,, OOMMee,, FF,, CCll,, BBrr}
\end{array}
\]

7,8,13,13b-Tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one (2a)

A 50 mL two neck round bottom flask fitted with condenser and rubber septum was charged with 2-(2-(1H-indol-3-yl)ethyl)isoindoline-1,3-dione (110 mg, 0.379 mmol), 4Å molecular sieves (50 mg), magnetic stir bar and anhydrous dichloromethane (20 mL) under nitrogen atmosphere. To this mixture was added trifluoromethanesulfonic acid (335 \(\mu\)L, 3.789 mmol) with stirring at room temperature. After 12 h the reaction mixture was neutralized with solid NaHCO\(_3\) (350 mg, 4.168 mmol). After 15 min., to this crude reaction mixture was added NaBH\(_4\) (64 mg, 1.705 mmol) and CF\(_3\)COOH (392 \(\mu\)L, 5.115 mmol) under nitrogen atmosphere with vigorous stirring at room temperature. After 12 h the reaction mixture was quenched with aqueous NaHCO\(_3\). Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO\(_3\), dried over anhydrous Na\(_2\)SO\(_4\) and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) mixture as eluent to give 7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one in 83% yield (86 mg) as pale yellow solid. (m.p. : 215-216 °C, lit.\(^3\) 212-214 °C); IR (KBr, cm\(^{-1}\)) : 3225, 2932, 2841, 1670, 1461; \(^1\)H-NMR (CDCl\(_3\), 400 MHz) : \(\delta\) 8.51 (br s, 1H), 7.90 (d, \(J = 7.6\) Hz, 1H), 7.84 (d, \(J = 7.6\) Hz, 1H), 7.61 (td, \(J = 7.6\), 1.0 Hz, 1H), 7.49 (t, \(J = 8.0\) Hz, 2H), 7.37 (d, \(J = 8.0\) Hz, 1H), 7.18 (td,
J = 8.0, 1.0 Hz, 1H), 7.10 (td, J = 7.6, 1.0 Hz, 1H), 5.84 (s, 1H), 4.87 (dd, J = 13.2, 5.6 Hz, 1H), 3.41 (ddd, J = 13.2, 11.2, 5.2 Hz, 1H), 3.02-2.93 (m, 1H), 2.87 (dd, J = 15.2, 5.2 Hz, 1H); 13C-NMR (CDCl3, 100 MHz) : 168.36, 143.07, 136.72, 132.68, 132.04, 130.18, 129.04, 126.92, 124.61, 122.75, 122.33, 120.20, 118.82, 111.24, 109.59, 57.22, 38.36, 21.83.

10-Methoxy-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one (2f)

A 50 mL two neck round bottom flask fitted with condenser and rubber septum was charged with 2-(2-(5-methoxy-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (100 mg, 0.312 mmol), 4Å molecular sieves (50 mg), magnetic stir bar and anhydrous dichloromethane (20 mL) under nitrogen atmosphere. After 15 min to this mixture was added trifluoromethanesulfonic acid (276 µL, 3.121 mmol) with stirring at room temperature. After 12 h the reaction mixture was neutralized with solid NaHCO3 (288 mg, 3.433 mmol). After 15 min., to this crude reaction mixture was added NaBH4 (53 mg, 1.404 mmol) and CF3COOH (323 µL, 4.213 mmol) under nitrogen atmosphere with vigorous stirring at room temperature. After 12 h the reaction mixture was quenched with aqueous NaHCO3. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO3, dried over anhydrous Na2SO4 and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) mixture as eluent to give 10-methoxy-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one in 74% yield (70 mg) as pale yellow solid. (m.p. : 230-231 °C); IR (KBr, cm⁻¹) : 3246, 3057, 2838, 1674, 1473, 1405, 1206, 861; 1H-NMR (DMSO-d6, 400 MHz) : δ 11.18 (br s, 1H), 8.27 (dd, J = 7.6, 0.6 Hz, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.70 (dd, J = 7.6, 1.1 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 6.91 (d, J = 2.4 Hz, 1H), 6.73 (dd, J = 8.7, 2.4 Hz, 1H), 6.03 (s, 1H), 4.58 (dd, J = 13.2, 5.6 Hz, 1H), 3.73 (s, 3H), 3.37 (dd, J = 11.6, 4.8 Hz, 1H), 2.80 (dd, J = 15.2, 4.8 Hz, 1H), 2.71-2.64 (m, 1H); 13C-NMR (DMSO-d6, 100 MHz) : 167.05, 153.27, 143.62, 131.81, 131.63, 131.43, 131.40, 128.55, 126.46, 123.71, 123.06, 111.88, 111.36, 106.94, 100.11, 56.61, 55.28, 37.67, 21.42; HRMS (ESI) (m/z) : [M+H]+ Found 305.1302; Calculated 305.1290; for C19H17N2O2.
12-Methyl-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one (2g)

A 50 mL two neck round bottom flask fitted with condenser and rubber septum was charged with 2-(2-(7-methyl-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (120 mg, 0.394 mmol), 4Å molecular sieves (50 mg), magnetic stir bar and anhydrous dichloromethane (20 mL) under nitrogen atmosphere. To this mixture was added trifluoromethanesulfonic acid (349 µL, 3.943 mmol) with stirring at room temperature. After 12 h the reaction mixture was neutralized with solid NaHCO₃ (364 mg, 4.337 mmol). After 15 min., to this crude reaction mixture was added NaBH₄ (67 mg, 1.774 mmol) and CF₃COOH (408 µL, 5.323 mmol) under nitrogen atmosphere with vigorous stirring at room temperature. After 12 h the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) mixture as eluent to give 12-methyl-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one in 66% yield (75 mg) as pale yellow solid. (m.p. : 204-205 °C); IR (KBr, cm⁻¹) : 3266, 3046, 2848, 2788, 1666, 1464, 1407; ¹H-NMR (CDCl₃, 400 MHz) : δ 8.09 (br s, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.2 Hz, 1H), 7.64 (t, J = 6.8 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 6.8 Hz, 1H), 5.85 (s, 1H), 4.86 (dd, J = 13.2, 5.6 Hz, 1H), 3.42-3.36 (m, 1H), 3.02-2.93 (m, 1H), 2.86 (dd, J = 15.4, 4.8 Hz, 1H), 2.52 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) : 168.26, 143.09, 136.23, 132.76, 132.03, 129.93, 129.03, 126.56, 124.70, 123.50, 122.20, 120.53, 120.33, 116.58, 110.39, 57.20, 38.35, 21.93, 16.84; HRMS (ESI) (m/z) : [M+H]^+ Found 289.1355; Calculated 289.1341; for C₁₉H₁₇N₂O.

10,12-Dimethyl-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one (2h)

A 50 mL two neck round bottom flask fitted with condenser and rubber septum was charged with 2-(2-(5,7-dimethyl-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (120 mg, 0.394 mmol), 4Å molecular sieves (50 mg), magnetic stir bar and anhydrous dichloromethane (20 mL) under nitrogen atmosphere. To this mixture was added trifluoromethanesulfonic acid (349 µL, 3.943 mmol) with stirring at room temperature. After 12 h the reaction mixture was neutralized with solid NaHCO₃ (364 mg, 4.337 mmol). After 15 min., to this crude reaction mixture was added NaBH₄ (67 mg, 1.774 mmol) and CF₃COOH (408 µL, 5.323 mmol) under nitrogen atmosphere with vigorous stirring at room temperature. After 12 h the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) mixture as eluent to give 10,12-dimethyl-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one in 66% yield (75 mg) as pale yellow solid. (m.p. : 204-205 °C); IR (KBr, cm⁻¹) : 3266, 3046, 2848, 2788, 1666, 1464, 1407; ¹H-NMR (CDCl₃, 400 MHz) : δ 8.09 (br s, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.2 Hz, 1H), 7.64 (t, J = 6.8 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 6.8 Hz, 1H), 5.85 (s, 1H), 4.86 (dd, J = 13.2, 5.6 Hz, 1H), 3.42-3.36 (m, 1H), 3.02-2.93 (m, 1H), 2.86 (dd, J = 15.4, 4.8 Hz, 1H), 2.52 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) : 168.26, 143.09, 136.23, 132.76, 132.03, 129.93, 129.03, 126.56, 124.70, 123.50, 122.20, 120.53, 120.33, 116.58, 110.39, 57.20, 38.35, 21.93, 16.84; HRMS (ESI) (m/z) : [M+H]^+ Found 289.1355; Calculated 289.1341; for C₁₉H₁₇N₂O.
ethyl)isoindoline-1,3-dione (120 mg, 0.377 mmol), 4Å molecular sieves (50 mg), magnetic stir bar and anhydrous dichloromethane (20 mL) under nitrogen atmosphere. To this mixture was added trifluoromethanesulfonic acid (334 µL, 3.769 mmol) with stirring at room temperature. After 12 h the reaction mixture was neutralized with solid NaHCO₃ (348 mg, 4.146 mmol). After 15 min., to this crude reaction mixture was added NaBH₄ (64 mg, 1.696 mmol) and CF₃COOH (390 µL, 5.088 mmol) under nitrogen atmosphere with vigorous stirring at room temperature. After 12 h the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) mixture as eluent to give 10,12-dimethyl-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one in 60% yield (68 mg) as pale yellow solid. (m.p. : 200-201 °C); IR (KBr, cm⁻¹) : 3271, 2851, 1666, 1409; ¹H-NMR (CDCl₃, 400 MHz) : δ 8.03 (br s, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.12 (s, 1H), 6.84 (s, 1H), 5.83 (s, 1H), 4.85 (dd, J = 13.2, 6.0 Hz, 1H), 3.42-3.34 (m, 1H), 2.98-2.90 (m, 1H), 2.83 (dd, J = 15.4, 4.8 Hz, 1H), 2.48 (s, 3H), 2.39 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) : 168.29, 143.20, 134.59, 132.74, 132.00, 130.02, 129.81, 128.96, 126.84, 125.16, 124.61, 122.30, 119.99, 116.20, 109.87, 57.30, 38.39, 21.94, 21.49, 16.78; HRMS (ESI) (m/z) : [M+H]+ Found 303.1498; Calculated 303.1497; for C₂₀H₁₉N₂O.

10-Fluoro-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one (2b)

A 50 mL two neck round bottom flask fitted with condenser and rubber septum was charged with 2-(2-(5-fluoro-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (125 mg, 0.405 mmol), 4Å molecular sieves (50 mg), magnetic stir bar and anhydrous dichloromethane (20 mL) under nitrogen atmosphere. To this mixture was added trifluoromethanesulfonic acid (359 µL, 4.054 mmol) with stirring at room temperature. After 12 h the reaction mixture was neutralized with solid NaHCO₃ (375 mg, 4.460 mmol). After 15 min., to this crude reaction mixture was added NaBH₄ (69 mg, 1.824 mmol) and CF₃COOH (419 µL, 5.473 mmol) under nitrogen atmosphere with vigorous stirring at room temperature. After 12 h the reaction mixture was quenched with aqueous NaHCO₃. Organic
layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) mixture as eluent to give 10-fluoro-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one in 79% yield (94 mg) as pale yellow solid. (m.p. : 251-252 °C); IR (KBr, cm⁻¹) : 3216, 2949, 1671, 1471, 1419, 727; ¹H-NMR (DMSO-d₆, 400MHz) : δ 11.46 (br s, 1H), 8.27 (d, J = 8.0 Hz, 1H), 7.72 (dd, J = 14.0, 8.0 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.38 (dd, J = 10.0, 5.0 Hz, 1H), 7.18 (dd, J = 11.2, 4.0 Hz, 1H), 6.93 (td, J = 10.0, 3.0 Hz, 1H), 6.06 (s, 1H), 4.58 (dd, J = 13.2, 5.0 Hz, 1H), 3.40-3.36 (m, 1H) [to assign this proton the compound was recorded in acetone-d₆, the value obtained was 3.27 (ddd, J = 13.2, 10.8, 5.6 Hz, 1H)], 2.81 (dd, J = 16.0, 4.0 Hz, 1H), 2.71-2.62 (m, 1H); ¹³C-NMR (DMSO-d₆, 100MHz) : 167.03, 156.80 (d, J = 230.4 Hz, 1C), 143.37, 132.98 (d, J = 4.3 Hz, 1C), 131.86, 131.63, 128.63, 126.38 (d, J = 10.0 Hz, 1C), 123.60, 123.09, 112.16 (d, J = 9.7 Hz, 1C), 109.55, 109.29, 107.47 (d, J = 4.6 Hz, 1C), 103.03 (d, J = 23.2 Hz, 1C), 56.52, 37.54, 21.29; HRMS (ESI) (m/z) : [M+H]⁺ Found 293.1099; Calculated 293.1090; for C₁₈H₁₄N₂OF.

10-Chloro-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one (2c)

A 50 mL two neck round bottom flask fitted with condenser and rubber septum was charged with 2-(2-(5-chloro-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (120 mg, 0.370 mmol), 4Å molecular sieves (50 mg), magnetic stir bar and anhydrous dichloromethane (20 mL) under nitrogen atmosphere. To this mixture was added trifluoromethanesulfonic acid (330 µL, 3.695 mmol) with stirring at room temperature. After 12 h the reaction mixture was neutralized with solid NaHCO₃ (341 mg, 4.065 mmol). After 15 min., to this crude reaction mixture was added NaBH₄ (63 mg, 1.663 mmol) and CF₃COOH (382 µL, 4.988 mmol) under nitrogen atmosphere with vigorous stirring at room temperature. After 12 h the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl
acetate : hexane (4:1) mixture as eluent to give 10-chloro-7,8,13,13b-tetrahydro-5\(H\)-benzo[1,2]indolizino[8,7-\(b\)]indol-5-one in 78% yield (89 mg) as pale yellow solid. (m.p. : 242-243 °C), IR (KBr, cm\(^{-1}\)) : 3220, 2939, 1671, 1468, 1413, 725; \(^1\)H-NMR (DMSO-\(d_6\), 400MHz) : \(\delta\) 11.57 (br s, 1H), 8.27 (d, \(J = 7.6\) Hz, 1H), 7.72 (dd, \(J = 14.4, 7.6\) Hz, 2H), 7.55 (t, \(J = 7.6\) Hz, 1H), 7.47 (d, \(J = 1.6\) Hz, 1H), 7.40 (d, \(J = 8.8\) Hz, 1H), 7.08 (dd, \(J = 8.8, 1.6\) Hz, 1H), 6.07 (s, 1H), 4.58 (dd, \(J = 13.0, 5.6\) Hz, 1H), 3.45-3.39 (m, 1H), [to assign this proton the compound was recorded in acetone-\(d_6\), the value obtained was 3.45 (ddd, \(J = 13.2, 11.2, 5.2\) Hz, 1H)], 2.82 (dd, \(J = 15.2, 4.0\) Hz, 1H), 2.71-2.63 (m, 1H); \(^{13}\)C-NMR (DMSO-\(d_6\), 100 MHz) : 167.12, 146.36, 134.92, 132.78, 131.97, 131.69, 128.75, 127.34, 123.77, 123.53, 123.21, 121.44, 117.58, 112.82, 107.24, 56.54, 37.58, 21.27; HRMS (ESI) : [M+H]\(^{+}\) Found 309.0780; Calculated 309.0795; for C\(_{18}\)H\(_{14}\)N\(_2\)OCl.

10-Bromo-7,8,13,13b-tetrahydro-5\(H\)-benzo[1,2]indolizino[8,7-\(b\)]indol-5-one (2d)

A 50 mL two neck round bottom flask fitted with condenser and rubber septum was charged with 2-(2-(5-bromo-1\(H\)-indol-3-yl)ethyl)isoindoline-1,3-dione (120 mg, 0.389 mmol), 4Å molecular sieves (50 mg), magnetic stir bar and anhydrous dichloromethane (20 mL) under nitrogen atmosphere. To this mixture was added trifluoromethanesulfonic acid (344 \(\mu\)L, 3.892 mmol) with stirring at room temperature. After 12 h the reaction mixture was neutralized with solid NaHCO\(_3\) (360 mg, 4.281 mmol). After 15 min., to this crude reaction mixture was added NaBH\(_4\) (66 mg, 1.751 mmol) and CF\(_3\)COOH (402 \(\mu\)L, 5.254 mmol) under nitrogen atmosphere with vigorous stirring at room temperature. After 12 h the reaction mixture was quenched with aqueous NaHCO\(_3\). Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO\(_3\), dried over anhydrous Na\(_2\)SO\(_4\) and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) mixture as eluent to give 10-bromo-7,8,13,13b-tetrahydro-5\(H\)-benzo[1,2]indolizino[8,7-\(b\)]indol-5-one in 73% yield (100 mg) as pale brown solid. (m.p. : 238-239 °C); IR (KBr, cm\(^{-1}\)) : 3235, 2844, 1672, 1466, 1413, 725; \(^1\)H-NMR (DMSO-\(d_6\), 400 MHz) : \(\delta\) 11.59 (br s, 1H), 8.27 (d, \(J = 7.6\) Hz, 1H), 7.72 (dd, \(J = 14.5, 7.6\) Hz, 2H), 7.61 (d, \(J = 1.7\) Hz, 1H), 7.55 (t, \(J = 7.6\) Hz, 1H), 7.36 (d, \(J = 8.6\) Hz, 1H), 7.20 (dd, \(J = 8.6, 1.7\) Hz, 1H), 7.14 (d, \(J = 7.6\) Hz, 1H), 7.08 (d, \(J = 1.6\) Hz, 1H), 6.05 (s, 1H), 4.58 (dd, \(J = 13.0, 5.6\) Hz, 1H), 3.48-3.42 (m, 1H), [to assign this proton the compound was recorded in acetone-\(d_6\), the value obtained was 3.45 (ddd, \(J = 13.0, 11.2, 5.2\) Hz, 1H)], 2.82 (dd, \(J = 15.2, 4.0\) Hz, 1H), 2.72-2.64 (d, 1H); \(^{13}\)C-NMR (DMSO-\(d_6\), 100 MHz) : 167.12, 146.36, 134.92, 132.78, 131.97, 131.69, 128.75, 127.34, 123.77, 123.53, 123.21, 121.44, 117.58, 112.82, 107.24, 56.54, 37.58, 21.27; HRMS (ESI) : [M+H]\(^{+}\) Found 309.0780; Calculated 309.0795; for C\(_{18}\)H\(_{14}\)N\(_2\)OCl.
1H), 6.07 (s, 1H), 4.57 (dd, J = 13.1, 6.0 Hz, 1H), 3.40-3.38 (m, 1H), [to assign this proton the compound was recorded again in acetone-d$_6$, the value obtained was 3.36 (ddd, J = 12.8, 11.2, 4.8 Hz)], 2.83 (dd, J = 15.5, 4.0 Hz, 1H), 2.70-2.64 (m, 1H); 13C-NMR (DMSO-d$_6$, 100 MHz) : 167.11, 143.34, 135.16, 132.60, 131.97, 131.68, 128.75, 128.02, 123.97, 123.76, 123.20, 120.59, 113.29, 111.43, 107.14, 56.50, 37.57, 21.25; HRMS (ESI) (m/z) : [M+H]$^+$ Found 353.0307; Calculated 353.0289; for C$_{18}$H$_{14}$N$_2$OBr.

12-Fluoro-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one (2e)

A 50 mL two neck round bottom flask fitted with condenser and rubber septum was charged with 2-(2-(7-fluoro-1H-indol-3-yl)ethyl)isoindoline-1,3-dione (125 mg, 0.405 mmol), 4Å molecular sieves (50 mg), magnetic stir bar and anhydrous dichloromethane (20 mL) under nitrogen atmosphere. To this mixture was added trifluoromethanesulfonic acid (359 µL, 4.054 mmol) with stirring at room temperature. After 12 h the reaction mixture was neutralized with solid NaHCO$_3$ (375 mg, 4.460 mmol). After 15 min., to this crude reaction mixture was added NaBH$_4$ (69 mg, 1.824 mmol) and CF$_3$COOH (419 µL, 5.473 mmol) under nitrogen atmosphere with vigorous stirring at room temperature. After 12 h the reaction mixture was quenched with aqueous NaHCO$_3$. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO$_3$, dried over anhydrous Na$_2$SO$_4$ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) mixture as eluent to give 12-fluoro-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-one in 71% yield (84 mg) as pale yellow solid. (m.p. : 230-231 °C); IR (KBr, cm$^{-1}$) : 3185, 3046, 1674, 1471, 1237, 719; 1H-NMR (DMSO-d$_6$, 400 MHz) : δ 11.81 (br s, 1H), 8.45 (dd, J = 7.6, 0.6 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.71 (dd, J = 7.6, 1.2 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.25 (dd, J = 6.4, 2.0 Hz, 1H), 6.99-6.91 (m, 2H), 6.06 (s, 1H), 4.59 (dd, J = 13.2, 5.6 Hz, 1H), 3.40-3.37 (m, 1H), [to assign this proton the compound was recorded again in acetone-d$_6$, the value obtained was 3.54 (ddd, J = 13.2, 11.2, 5.2 Hz, 1H)], 2.84 (dd, J = 15.6, 4.4 Hz, 1H), 2.74-2.65 (m, 1H); 13C-NMR (DMSO-d$_6$, 100 MHz) : 167.31, 149.04 (d, J = 241.3 Hz, 1C), 143.50, 132.33, 132.04, 131.62, 130.16 (d, J = 5.9 Hz, 1C), 128.73, 124.11, 123.96, 123.11, 119.39 (d, J = 6.1 Hz, 1C), 114.47 (d, J = 3.0 Hz, 1C), 108.60 (d, J = 2.0 Hz, 1C), 106.63 (d, J = 16.2 Hz, 1C), S22
56.66, 37.68, 21.60; HRMS (ESI) (m/z) : [M+H]+ Found 293.1087; Calculated 293.1090; for C_{18}H_{14}N_{2}OF.

(F) General procedure for the synthesis of indoloindolizinones and indoloquinolinizinones

![Chemical Structure](content)

Where, R = H, F, Cl, Br, OMe, Me
X - X = -CH_{2}CH_{2}-, cyc-1,2-C_{6}H_{10}-, -CH_{2}CH_{2}CH_{2}-

5,6,11,11b-Tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (2i)

A 50 mL two neck round bottom flask was charged with 1-(2-(1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (150 mg, 0.619 mmol), 4Å molecular sieves (50 mg), anhydrous CH_{2}Cl_{2} (20 mL), and a stir bar. The flask was capped with a rubber septum and maintained in nitrogen atmosphere. Trifluoromethanesulfonic acid (548 µL, 6.191 mmol) was added and stirred at room temperature for 12 h. To this reaction mixture was added NaBH₄ (105 mg, 2.786 mmol), methanol (3 mL) and stirred for 0.5 h under nitrogen atmosphere. Then the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) as eluent to give 5,6,11,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one in 82% yield (113 mg) as off white solid. (m.p. : 251-252 ℃, lit³ 250 ℃); IR (KBr, cm⁻¹) : 3444, 3076, 2853, 1659, 1450, 1304; ¹H-NMR (CDCl₃, 400 MHz) : δ 8.13 (br s, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.2 Hz, 1H), 4.96-4.92 (m, 1H), 4.57-4.52 (m, 1H), 3.08-3.01 (m, 1H), 2.92-2.80 (m, 2H), 2.65-2.48 (m, 3H), 1.99-1.93 (m, 1H); ¹³C-NMR (CDCl₃, 100 MHz) : 173.33, 136.39, 133.28, 126.92, 122.37, 120.01, 118.57, 111.09, 108.45, 54.38, 37.72, 31.75, 25.81, 21.14.

8-Methoxy-5,6,11,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (2n)
A 50 mL two neck round bottom flask was charged with 1-(2-(5-methoxy-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (100 mg, 0.367 mmol), 4Å molecular sieves (50 mg), anhydrous CH₂Cl₂ (20 mL), and a stir bar. The flask was capped with a rubber septum and maintained in nitrogen atmosphere. Trifluoromethanesulfonic acid (325 µL, 3.672 mmol) was added and stirred at room temperature for 12 h. To this reaction mixture was added NaBH₄ (63 mg, 1.653 mmol), methanol (3 mL) and stirred for 0.5 h under nitrogen atmosphere. Then the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) as eluent to give 8-methoxy-5,6,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one in 80% yield (75 mg) as off white solid. (m.p. : 220-221 °C); IR (KBr, cm⁻¹) : 3255, 2983, 2909, 2838, 1669, 1441, 1303, 1134; ¹H-NMR (CDCl₃, 400 MHz) : δ 7.91 (br s, 1H), 7.22 (d, J = 8.8 Hz, 1H), 6.94 (d, J = 2.4 Hz, 1H), 6.84 (dd, J = 8.8, 2.4 Hz, 1H), 4.92 (t, J = 7.2 Hz, 1H), 4.56-4.51 (m, 1H), 3.85 (s, 3H), 3.07-3.00 (m, 1H), 2.89-2.75 (m, 2H), 2.67-2.48 (m, 3H), 2.02-1.89 (m, 1H); ¹³C-NMR (CDCl₃, 100 MHz) : 173.37, 154.48, 134.17, 131.42, 127.40, 112.30, 111.84, 108.33, 100.72, 56.07, 54.47, 37.75, 31.77, 25.83, 21.23.

10-Methyl-5,6,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (2o)

A 50 mL two neck round bottom flask was charged with 1-(2-(7-methyl-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (125 mg, 0.488 mmol), 4Å molecular sieves (50 mg), anhydrous CH₂Cl₂ (20 mL), and a stir bar. The flask was capped with a rubber septum and maintained in nitrogen atmosphere. Trifluoromethanesulfonic acid (432 µL, 4.877 mmol) was added and stirred at room temperature for 12 h. To this reaction mixture was added NaBH₄ (83 mg, 2.195 mmol), methanol (3 mL) and stirred for 0.5 h under nitrogen atmosphere. Then the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) as eluent to give 10-methyl-5,6,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (2o) in 70% yield (82 mg) as...
A 50 mL two neck round bottom flask was charged with 1-(2-(5,7-dimethyl-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (100 mg, 0.370 mmol), 4Å molecular sieves (50 mg), anhydrous CH$_2$Cl$_2$ (20 mL), and a stir bar. The flask was capped with a rubber septum and maintained in nitrogen atmosphere. Trifluoromethanesulfonic acid (327 µL, 3.699 mmol) was added and stirred at room temperature for 12 h. To this reaction mixture was added NaBH$_4$ (63 mg, 1.665 mmol), methanol (3 mL) and stirred for 0.5 h under nitrogen atmosphere. Then the reaction mixture was quenched with aqueous NaHCO$_3$. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO$_3$, dried over anhydrous Na$_2$SO$_4$ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) as eluent to give 8,10-dimethyl-5,6,11,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one in 65% yield (61 mg) as pale blue solid. (m.p. : 252-253 °C; IR (KBr, cm$^{-1}$) : 3264, 2907, 2719, 1665, 1431, 1368; 1H-NMR (CDCl$_3$, 400 MHz) : δ 7.83 (br s, 1H), 7.13 (s, 1H), 6.84 (s, 1H), 4.96-4.92 (m, 1H), 4.52 (ddd, $J = 12.8, 5.5, 1.6$ Hz, 1H), 3.06-2.98 (m, 1H), 2.84 (ddd, $J = 15.6, 5.5, 1.6$ Hz, 1H), 2.80-2.79 (m, 1H), 2.65-2.57 (m, 2H), 2.54-2.50 (m, 1H), 2.45 (s, 3H), 2.42 (s, 3H), 1.98-1.91 (m, 1H); 13C-NMR (CDCl$_3$, 100 MHz) : 173.24, 134.09, 133.02, 129.48, 126.65, 124.61, 119.81, 115.83, 108.43, 54.39, 37.66, 31.69, 25.86, 21.36, 21.15, 16.65; HRMS (ESI) : [M+H]$^+$ Found 255.1509; Calculated 255.1497; for C$_{16}$H$_{19}$N$_2$O.

8-Fluoro-5,6,11,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (2j)
A 50 mL two neck round bottom flask was charged with 1-(2-(5-fluoro-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (100 mg, 0.384 mmol), 4Å molecular sieves (50 mg), anhydrous CH₂Cl₂ (20 mL), and a stir bar. The flask was capped with a rubber septum and maintained in nitrogen atmosphere. Trifluoromethanesulfonic acid (340 µL, 3.842 mmol) was added and stirred at room temperature for 12 h. To this reaction mixture was added NaBH₄ (65 mg, 1.729 mmol), methanol (3 mL) and stirred for 0.5 h under nitrogen atmosphere. Then the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) as eluent to give 8-fluoro-5,6,11,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one in 65% yield (61 mg) as off white solid. (m.p. : 276-277 °C); IR (KBr, cm⁻¹) : 3244, 2978, 2924, 2865, 1658, 1439, 1306, 799; ¹H-NMR (acetone-d₆, 400 MHz) : δ 10.3 (br s, 1H), 7.38 (dd, J = 9.0, 4.4 Hz, 1H), 7.20 (dd, J = 9.6, 2.4 Hz, 1H), 6.91 (td, J = 9.0, 2.4 Hz, 1H), 5.02-4.98 (m, 1H), 4.44 (ddd, J = 12.8, 5.6, 1.2 Hz, 1H), 3.08-3.00 (m, 1H), 2.81-2.70 (m, 2H), 2.69-2.64 (m, 1H), 2.58-2.49 (m, 1H), 2.35 (ddd, J = 16.4, 9.6, 2.4 Hz, 1H), 2.01-1.93 (m, 1H); ¹³C-NMR (DMSO-d₆, 100 MHz) : 172.33, 156.82 (d, J = 230.0 Hz, 1C), 136.82, 132.74, 126.69 (d, J = 9.8 Hz, 1C), 112.00 (d, J = 9.7 Hz, 1C), 108.82 (d, J = 25.7 Hz, 1C), 106.36 (d, J = 4.4 Hz, 1C), 102.79 (d, J = 23.1 Hz, 1C), 53.60, 36.80, 31.00, 25.30, 20.69.

8-Chloro-5,6,11,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (2k)

A 50 mL two neck round bottom flask was charged with 1-(2-(5-chloro-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (140 mg, 0.506 mmol), 4Å molecular sieves (50 mg), anhydrous CH₂Cl₂ (20 mL), and a stir bar. The flask was capped with a rubber septum and maintained in nitrogen atmosphere. Trifluoromethanesulfonic acid (448 µL, 5.059 mmol) was added and stirred at room temperature for 12 h. To this reaction mixture was added NaBH₄ (86 mg, 2.277 mmol), methanol (3 mL) and stirred for 0.5 h under nitrogen atmosphere. Then the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was...
purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) as eluent to give 8-chloro-5,6,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one in 88% yield (116 mg) as pale brown solid. (m.p. : 241-242 °C); IR (KBr, cm⁻¹) : 3256, 2978, 2913, 2852, 2353, 1659, 1438, 1262, 641; \(^1\)H-NMR (CDCl₃, 400 MHz) : δ 7.88 (br s, 1H), 7.45 (d, \(J = 1.6\) Hz, 1H), 7.14 (dd, \(J = 8.6, 1.6\) Hz, 1H), 4.94-4.90 (m, 1H), 4.53 (dd, \(J = 13.2, 6.0, 1.6\) Hz, 1H), 3.03 (td, \(J = 11.6, 6.0\) Hz, 1H), 2.84 (ddd, \(J = 15.4, 6.0, 2.0\) Hz, 1H), 2.81-2.74 (m, 1H), 2.68-2.49 (m, 3H), 2.04-1.90 (m, 1H); \(^13\)C-NMR (DMSO-d₆, 100 MHz) : 172.38, 136.57, 134.61, 127.63, 123.29, 120.88, 117.26, 112.68, 106.06, 53.55, 36.77, 31.01, 25.26, 20.60; HRMS (ESI) : [M+H]⁺ Found 261.0784; Calculated 261.0795; for C₁₄H₁₄N₂OCl.

8-Bromo-5,6,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (2l)

![Structural formula of 8-Bromo-5,6,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (2l)](image)

A 50 mL two neck round bottom flask was charged with 1-(2-(5-bromo-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (80 mg, 0.249 mmol), 4Å molecular sieves (50 mg), anhydrous CH₂Cl₂ (20 mL), and a stir bar. The flask was capped with a rubber septum and maintained in nitrogen atmosphere. Trifluoromethanesulfonic acid (220 µL, 2.491 mmol) was added and stirred at room temperature for 12 h. To this reaction mixture was added NaBH₄ (42 mg, 1.121 mmol), methanol (3 mL) and stirred for 0.5 h under nitrogen atmosphere. Then the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) as eluent to give 8-bromo-5,6,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one in 85% yield (65 mg) as off white solid. (m.p. : 260-261 °C); IR (KBr, cm⁻¹) : 3260, 2966, 2844, 1661, 1437, 1304, 793; \(^1\)H-NMR (CDCl₃, 400 MHz) : δ 8.10 (br s, 1H), 7.61 (s, 1H), 4.94-4.90 (m, 1H), 4.52 (dd, \(J = 13.6, 5.6\) Hz, 1H), 3.02 (td, \(J = 11.2, 5.6\) Hz, 1H), 2.83 (ddd, \(J = 16.0, 5.6\) Hz, 1H), 2.79-2.74 (m, 1H), 2.67-2.48 (m, 3H), 1.99-1.89 (m, 1H); \(^13\)C-NMR (DMSO-d₆, 100 MHz) : 172.32, 136.37, 134.83, 128.32, 123.40, 120.27, 113.15, 111.20, 105.96, 53.50, 36.74, 31.00, 25.25, 20.58.

10-Fluoro-5,6,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (2m)

![Structural formula of 10-Fluoro-5,6,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (2m)](image)
A 50 mL two neck round bottom flask was charged with 1-(2-(7-fluoro-1H-indol-3-yl)ethyl)pyrrolidine-2,5-dione (100 mg, 0.384 mmol), 4Å molecular sieves (50 mg), anhydrous CH₂Cl₂ (20 mL), and a stir bar. The flask was capped with a rubber septum and maintained in nitrogen atmosphere. Trifluoromethanesulfonic acid (340 µL, 3.842 mmol) was added and stirred at room temperature for 12 h. To this reaction mixture was added NaBH₄ (65 mg, 1.729 mmol), methanol (3 mL) and stirred for 0.5 h under nitrogen atmosphere. Then the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) as eluent to give 10-fluoro-5,6,11,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one in 81% yield (76 mg) as pale brown solid. (m.p. : 219-220 °C); IR (KBr, cm⁻¹) : 3221, 2924, 2855, 1672, 1437, 1352, 726; ¹H-NMR (acetone-d₆, 400 MHz) : δ 10.3 (br s, 1H), 7.13 (d, J = 7.8 Hz, 1H), 6.85 (td, J = 7.8, 4.7 Hz, 1H), 6.73 (dd, J = 11.5, 7.8 Hz, 1H), 4.87-4.83 (m, 1H), 4.27 (ddd, J = 13.0, 5.8, 1.0 Hz, 1H), 2.91-2.83 (m, 1H), 2.65-2.52 (m, 3H), 2.41-2.32 (m, 1H), 2.17 (ddd, J = 16.3, 9.4, 2.4 Hz, 1H), 1.84-1.76 (m, 1H); ¹³C-NMR (DMSO-d₆, 100 MHz) : 172.4, 149.13 (d, J = 239.1 Hz, 1C), 135.95, 130.43, 123.61 (d, J = 12.8 Hz, 1C), 119.07, 114.17, 107.15, 106.08 (d, J = 15.8 Hz, 1C), 53.61, 36.74, 31.04, 25.48, 20.89; HRMS (ESI) (m/z) : [M+H]+ Found 245.1100; Calculated 245.1090; for C₁₄H₁₄N₂OF.

1,2,3,6,7,12b-Hexahydroindolo[2,3-a]quinolinizin-4(12H)-one (2r)⁸

A 50 mL two neck round bottom flask was charged with 1-(2-(1H-indol-3-yl)ethyl)piperidine-2,6-dione (150 mg, 0.585 mmol), 4Å molecular sieves (50 mg), anhydrous CH₂Cl₂ (20 mL), and a stir bar. The flask was capped with a rubber septum and maintained in nitrogen atmosphere. Trifluoromethanesulfonic acid (518 µL, 5.853 mmol) was added and stirred at room temperature for 12 h. To this reaction mixture was added NaBH₄ (100 mg, 2.634 mmol), methanol (3 mL) and stirred for 0.5 h under nitrogen atmosphere. Then the reaction mixture was quenched with aqueous NaHCO₃. Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO₃, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column
chromatography using ethyl acetate : hexane (4:1) as eluent to give 1,2,3,6,7,12b-hexahydroindolo[2,3-α]quinolinizin-4(12H)-one in 87% yield (122 mg) as off white solid. (m.p. : 239-240 °C, lit.\(^8\) 240-241 °C); IR (KBr, cm\(^{-1}\)) : 3265, 3052, 1596, 1434, 1262; \(^1\)H-NMR (DMSO-\(d_6\), 400 MHz) : δ 10.92 (br s, 1H), 7.39 (d, \(J = 7.6\) Hz, 1H), 7.31 (d, \(J = 8.0\) Hz, 1H), 7.06 (t, \(J = 7.2\) Hz, 1H), 6.97 (t, \(J = 7.2\) Hz, 1H), 4.91 (dd, \(J = 12.4, 4.4\) Hz, 1H), 4.78 (dd, \(J = 10.4, 4.4\) Hz, 1H), 2.78 (td, \(J = 12.0, 4.0\) Hz, 1H), 2.71-2.54 (m, 3H), 2.39-2.22 (m, 2H), 1.82-1.75 (m, 2H), 1.67-1.57 (m, 1H); \(^13\)C-NMR (CDCl\(_3\), 100 MHz) : 169.19, 136.23, 133.32, 126.93, 122.18, 119.87, 118.43, 110.93, 109.67, 54.39, 40.15, 32.45, 29.10, 21.01, 19.42.

2,3,4,4a,7,8,13b,13c-Octahydro-1\(H\)-benzo[1,2]indolizino[8,7-\(b\)]indol-5(13\(H\))-one (2q)

A 50 mL two neck round bottom flask was charged with 2-(2-(1\(H\)-indol-3-yl)ethyl)hexahydro-1\(H\)-isoindole-1,3(2\(H\))-dione (80 mg, 0.270 mmol), 4Å molecular sieves (50 mg), anhydrous CH\(_2\)Cl\(_2\) (20 mL), and a stir bar. The flask was capped with a rubber septum and maintained in nitrogen atmosphere. Trifluoromethanesulfonic acid (239 µL, 2.699 mmol) was added and stirred at room temperature for 12 h. To this reaction mixture was added NaBH\(_4\) (46 mg, 1.215 mmol), methanol (3 mL) and stirred for 0.5 h under nitrogen atmosphere. Then the reaction mixture was quenched with aqueous NaHCO\(_3\). Organic layer was separated and aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with aqueous NaHCO\(_3\), dried over anhydrous Na\(_2\)SO\(_4\) and filtered. The solvent was removed under reduced pressure. The crude mixture was purified through neutral alumina column chromatography using ethyl acetate : hexane (4:1) as eluent to give 2,3,4,4a,7,8,13b,13c-octahydro-1\(H\)-benzo[1,2]indolizino[8,7-\(b\)]indol-5(13\(H\))-one in 62% yield (47 mg) as pale yellow solid. (m.p. : 248-249 °C); IR (KBr, cm\(^{-1}\)) : 3293, 2929, 2851, 1668, 1430, 1250; \(^1\)H-NMR (CDCl\(_3\), 400 MHz) : δ 7.94 (br s, 1H), 7.51 (d, \(J = 8.0\) Hz, 1H), 7.18 (t, \(J = 7.6\) Hz, 1H), 7.13 (t, \(J = 7.6\) Hz, 1H), 4.85 (d, \(J = 4.8\) Hz, 1H), 4.54 (dd, \(J = 12.8, 5.6\) Hz, 1H), 2.98 (td, \(J = 11.6, 4.4\) Hz, 1H), 2.88 (dd, \(J = 15.2, 4.4\) Hz, 1H), 2.84-2.80 (m, 1H), 2.76 (t, \(J = 5.6\) Hz, 1H), 2.68-2.64 (m, 1H), 2.32 (d, \(J = 14.0\) Hz, 1H), 1.56-1.46 (m, 3H), 1.28-1.24 (m, 1H), 1.12-1.01 (m, 2H), 0.83-0.74 (m, 1H); \(^13\)C-NMR (CDCl\(_3\), 100 MHz) : 173.87, 136.53, 130.20, 127.02, 122.27, 119.93, 118.46, 111.02, 110.43,
S30

56.47, 43.13, 38.25, 37.45, 29.84, 23.85, 23.19, 22.77, 21.25; HRMS (ESI) (m/z) : [M+H]^+

Found 281.1652; Calculated 281.1654; for C_{18}H_{21}N_{2}O.

G Synthesis of (±)-harmicine

2,3,5,6,11,11b-hexahydro-1H-indolizino[8,7-b]indole (4)^9

Lithium aluminium hydride (252 mg, 6.629 mmol) was weighed into a pre-dried two neck round bottom flask fitted with a condenser under nitrogen atmosphere. 5,6,11,11b-tetrahydro-1H-indolizino[8,7-b]indol-3(2H)-one (100 mg, 0.442 mmol) was added to the reaction flask under nitrogen atmosphere. Anhydrous tetrahydrofuran was added to the reaction mixture at 0 °C and the reaction mixture was stirred at room temperature for 24 h. After checking TLC, tert-butyl methyl ether (25.0 mL) was added and the reaction was quenched by careful addition of saturated aqueous sodium potassium tartrate solution. The mixture was stirred for 1 h before the addition of anhydrous Na$_2$SO$_4$ prior to filtration through celite pad. The filtrate was evaporated under reduced pressure to give of 2,3,5,6,11,11b-hexahydro-1H-indolizino[8,7-b]indole, 73 mg (78%), as colorless solid. (m.p. : 171-172 °C, lit.9 174-175 °C); IR (KBr, cm$^{-1}$) : 3433, 3054, 2940, 2842, 1453, 1305, 743; 1H-NMR (CDCl$_3$, 400 MHz) : δ 7.85 (br s, 1H), 7.48 (d, $J = 7.6$ Hz, 1H), 7.31 (d, $J = 7.8$ Hz, 1H), 7.14 (td, $J = 7.2$, 1.0 Hz, 1H), 7.09 (td, $J = 7.6$, 1.0 Hz, 1H), 4.26-4.23 (m, 1H), 3.33 (ddd, $J = 13.2$, 5.6, 2.4 Hz, 1H), 3.12-3.05 (m, 1H), 2.99-2.87 (m, 3H), 2.69-2.64 (m, 1H), 2.31-2.28 (m, 1H), 1.96-1.83 (m, 3H); 13C-NMR (CDCl$_3$, 100 MHz) : 136.10, 135.57, 127.52, 121.57, 119.55, 118.27, 110.84, 108.03, 57.09, 49.41, 46.10, 29.55, 23.58, 17.95.

Synthesis of (±)-10-desbromoarborescidine-A

1,2,3,4,6,7,12,12b-Octahydroindolo[2,3-a]quinolizine (5)^10

Lithium aluminium hydride (710 mg, 18.727 mmol) was weighed into a pre-dried two neck round bottom flask fitted with a condenser under nitrogen atmosphere. 1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (300 mg, 1.248 mmol) was added to the reaction flask under nitrogen atmosphere. Anhydrous tetrahydrofuran was added to the reaction mixture at 0 °C and the reaction mixture was heated to reflux for 24 h. After checking TLC, tert-butyl methyl ether (25.0 mL) was added and the reaction was quenched by careful addition of
saturated aqueous sodium potassium tartrate solution. The mixture was stirred for 1 h before the addition of anhydrous Na₂SO₄ prior to filtration through celite pad. The filtrate was evaporated under reduced pressure to give 1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine, 178 mg (63%), as colorless solid. (m.p. : 144-145 °C, lit.¹⁰ 146-148 °C); IR (KBr, cm⁻¹) : 3191, 2922, 2848, 1448, 1321, 735; ¹H-NMR (CDCl₃, 400 MHz) : δ 7.72 (br s, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.15-7.07 (m, 2H), 3.24 (d, J = 11.0 Hz, 1H), 3.10-2.98 (m, 3H), 2.75-2.59 (m, 2H), 2.39 (td, J = 11.0, 4.0 Hz, 1H), 2.07 (dd, J = 12.0, 2.4 Hz, 1H), 1.91 (dt, J = 12.0, 3.2 Hz, 1H), 1.80-1.71 (m, 2H), 1.60 (ddd, J = 24.0, 12.0, 3.2 Hz, 1H), 1.55-1.45 (m, 1H); ¹³C-NMR (CDCl₃, 100 MHz) : 136.09, 135.27, 127.64, 121.37, 119.47, 118.23, 110.83, 108.26, 60.37, 55.89, 53.69, 30.13, 25.88, 24.46, 21.73.

(H) Crystal structures

<table>
<thead>
<tr>
<th>2, CCDC 876038</th>
<th>2e, CCDC 876034</th>
</tr>
</thead>
<tbody>
<tr>
<td>2h, CCDC 876035</td>
<td>2o, CCDC 876036</td>
</tr>
</tbody>
</table>
(1) References

C13CPD CDCl3 {D:\CRR} KOPAL 1
C13CPD CDCl3 {D:\CRR} KOPAL 1

Current Data Parameters
NAME SMR-PR
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120307
Time 11.29
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 256
DS 4
SWR 24038.461 Hz
FTRES 0.366798 Hz
AQ 1.3631988 sec
RG 50.8
DN 20.800 usec
DE 6.00 usec
TE 295.5 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
SF01 106.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SF02 400.1316005 MHz

F2 - Processing parameters
S1 32768
SF 106.6127546 MHz
WOK EM
SSB 0
LB 1.60 Hz
GB 0
PC 1.40

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
Current Data Parameters
NAME SMR-PHIM
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20101102
Time 13.29
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 106
DS 4
SWR 24038.461 Hz
T1RES 0.366798 Hz
AQ 1.3631988 sec
RG 912
DW 20.800 usec
TE 298.0 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
SF01 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SF02 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127547 MHz
RGX 0 SM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
C13CPD CDC13 {D:\CRR} KOPAL 1

Current Data Parameters
NAME SMR-1-156-1
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20101229
Time 12.53
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 63
DS 4
SNR 24038.461 Hz
PDRES 0.366798 Hz
AQ 1.3631988 sec
RG 1440
DN 20.800 usec
DE 6.00 usec
TE 297.6 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
SFO1 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
P12 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SFO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127690 MHz
ROW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
PROTON CDCl3 (D:\CRR) KOPAL 1

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
Current Data Parameters

<table>
<thead>
<tr>
<th>NAME</th>
<th>SMR-1-100-Di</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPNO</td>
<td>1</td>
</tr>
<tr>
<td>PROCNO</td>
<td>1</td>
</tr>
</tbody>
</table>

F2 - Acquisition Parameters

<table>
<thead>
<tr>
<th>Date</th>
<th>20110621</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>11:30</td>
</tr>
<tr>
<td>INSTRUM</td>
<td>spect</td>
</tr>
<tr>
<td>PROBHD</td>
<td>5 mm BBO BB-1H</td>
</tr>
<tr>
<td>PULPROG</td>
<td>zgpg30</td>
</tr>
<tr>
<td>TD</td>
<td>65536</td>
</tr>
<tr>
<td>SOLVENT</td>
<td>CDCl3</td>
</tr>
<tr>
<td>NS</td>
<td>256</td>
</tr>
<tr>
<td>SWH</td>
<td>24038.461 Hz</td>
</tr>
<tr>
<td>FIDRES</td>
<td>0.366798 Hz</td>
</tr>
<tr>
<td>AQ</td>
<td>1.3631988 sec</td>
</tr>
<tr>
<td>RG</td>
<td>45.2</td>
</tr>
<tr>
<td>DW</td>
<td>20.800 usec</td>
</tr>
<tr>
<td>DE</td>
<td>6.000 usec</td>
</tr>
<tr>
<td>TE</td>
<td>296.2 K</td>
</tr>
<tr>
<td>D1</td>
<td>2.00000000 sec</td>
</tr>
<tr>
<td>d11</td>
<td>0.03000000 sec</td>
</tr>
<tr>
<td>DELTA</td>
<td>1.89999998 sec</td>
</tr>
<tr>
<td>TD0</td>
<td>1</td>
</tr>
</tbody>
</table>

CHANNEL f1

NUC1	13C
P1	9.50 usec
PL1	-8.60 dB
SFO1	100.6228298 MHz

CHANNEL f2

NUC2	1H
PCPD2	90.00 usec
PL12	15.60 dB
PL13	15.60 dB
PL2	-9.90 dB
SFO2	400.1316005 MHz

F2 - Processing parameters

S1	32748
SF	100.6127561 MHz
RWX	10
SSB	0
LB	1.60 Hz
GB	0
FC	1.40
Current Data Parameters
NAME SMR-Con-A
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120130
Time 18.32
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 1024
DS 4
SNR 24038.461 Hz
FTRES 0.366798 Hz
AQ 1.3631988 sec
RG 50.8
DW 20.800 usec
DE 6.00 usec
TE 297.1 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
SF01 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SF02 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6228298 MHz
KOM EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
<table>
<thead>
<tr>
<th>ppm</th>
<th>168.47</th>
<th>134.67</th>
<th>134.06</th>
<th>132.24</th>
<th>128.70</th>
<th>125.46</th>
<th>123.56</th>
<th>123.35</th>
<th>122.57</th>
<th>118.48</th>
<th>112.47</th>
<th>112.26</th>
<th>77.48</th>
<th>77.16</th>
<th>76.84</th>
</tr>
</thead>
</table>

Current Data Parameters

NAME
SMR-CHLORO

EXPNO
1

PROCNO
1

F2 - Acquisition Parameters

Date_
20111208

Time
11.28

INSTRUM
spect

PROBHD
5 mm BEZ BB-1H

PULPROG
zpg30

TD
65536

SOLVENT
CDCl3

NS
256

DS
4

SNR
24038.461 Hz

FTRES
0.366798 Hz

AQ
1.3631988 sec

RG
1290

DN
20.800 usec

DE
6.00 usec

TE
298.1 K

D1
2.000000000 sec

d11
0.000000000 sec

DELTA
1.89999998 sec

TDO
1

LU3C

F2 - Processing parameters

SI
32768

SF
100.6127543 MHz

WDW
EM

SSB
0

LB
1.00 Hz

GB
0

PC
1.40
Current Data Parameters
NAME SMR-con-B
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120130
Time 13.53
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 1024
DS 4
SNR 24038.461 Hz
FTIDRES 0.366798 Hz
AQ 1.3631988 sec
RG 1030
INW 20.800 usec
TE 6.00 usec
DK 795.9 K
DK1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.39999998 sec
TDO 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -6.60 dB
SPFO1 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SPFO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127546 MHz
KOK EM
SSB 0
LB 1.00 Hz
GB 0
FC 1.40
C13CPD CDCl3 {D:\CRR} KOPAL 1

Current Data Parameters
NAME: SMR-I-230-1
EXPNO: 2
PROCNO: 1

F2 - Acquisition Parameters
Date: 20110713
Time: 14.00
INSTRUM: spect
PROBHD: 5 mm BBO BB-1H
PULPROG: zgpg30
TD: 65536
SOLVENT: CDCl3
NS: 269
DS: 4
SWR: 24038.461 Hz
FTDRFS: 0.366798 Hz
AQ: 1.3631988 sec
RG: 50.8
DN: 20.800 usec
DE: 6.00 usec
TE: 295.5 K
D1: 2.00000000 sec
d11: 0.03000000 sec
DELTA: 1.89999998 sec
TD0: 1

====== CHANNEL f1 ======
NUC1: 13C
P1: 9.50 usec
PL1: -0.60 dB
SF01: 100.6228298 MHz

====== CHANNEL f2 ======
CPDPRG2: waltz16
NUC2: 1H
PCPD2: 90.00 usec
PL12: 15.60 dB
PL13: 15.60 dB
PL2: -0.90 dB
SF02: 400.1316005 MHz

F2 - Processing parameters
SI: 32768
SF: 100.6127664 MHz
WOK: EM
SSB: 0
LB: 1.60 Hz
GB: 0
PC: 1.40
Current Data Parameters
NAME SMR-I-235-2
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110708
Time 12.15
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zg30
TD 65536
SOLVENT CDCl3
NS 16
DS 2
SWH 8223.685 Hz
FIDRES 0.125483 Hz
AQ 3.9846387 sec
RG 228
DW 60.800 usec
DE 6.00 usec
TE 295.7 K
D1 1.000000000 sec
TD0 1

==== CHANNEL f1 =====
NUC1 1H
P1 14.00 usec
PL1 -0.80 dB
SFO1 400.1324710 MHz

F2 - Processing parameters
SI 32768
SF 400.1299888 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00
C13CPD CDCl3 {D:\CRR} KOPAL 1

Current Data Parameters
NAME SMR-I-235-2
EXPNO 3
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110713
Time 12.45
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 1024
DS 4
SWH 24038.461 Hz
FTPDRES 0.366798 Hz
AQ 1.3631988 sec
RG 50.8
DW 20.800 usec
DE 6.00 usec
TE 295.7 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
SP01 100.6228298 MHz

======== CHANNEL f2 ========
CPDP2G2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SP02 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127685 MHz
RWW 0 MHz
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
PROTON CDCl3 (D:\CRR) KOPAL 1

- Peaks at 7.966, 7.509, 7.093, 7.040, 6.985 ppm
- Peaks at 3.848, 3.829, 3.069, 3.048, 3.031 ppm
- Other peaks at various ppm values

Chemical structure with labels for protons.
Current Data Parameters
NAME SMR-I-100-10
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110802
Time 11.42
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 175
DS 4
SNR 24038.461 Hz
FTRES 0.366798 Hz
AQ 1.3631988 sec
RG 50.8
DN 20.800 usec
DE 6.00 usec
TE 297.5 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

==== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
SP01 100.6228298 MHz

==== CHANNEL f2 ========
CPDPDG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SP02 400.1316000 MHz

F2 - Processing parameters
S1 32768
SF 100.6127564 MHz
KOM 0
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
C13CPD CDC13 (D:\CRR) KOPAL 1

Current Data Parameters
NAME SMR-4DS
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date 20120216
Time 18.14
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 1024
DS 4
SNR 24038.461 Hz
FIDRES 0.366798 Hz
AQ 1.3631988 sec
RG 50.8
DW 20.800 usec
DE 6.00 usec
TE 297.7 K
D1 2.00000000 sec
d11 0.00000000 sec
DELTA 1.89999998 sec
TD0 1

====== CHANNEL f1 ======
NUC1 13C
F1 9.50 usec
PL1 -3.60 dB
SF01 100.6228298 MHz

====== CHANNEL f2 ======
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -2.90 dB
SP02 400.1316005 MHz

F2 - Processing parameters
S1 32768
SF 100.6127547 MHz
DSW EM
SSB 0
LB 1.60 Hz
GB 0
PC 1.40
PROTON CDCl3 {D:\CRR} KOPAL 1

Current Data Parameters
NAME SMR-I-192-2
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110324
Time 11.48
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zg30
TD 65536
SOLVENT CDCl3
NS 16
DS 2
SWH 8223.685 Hz
FIDRES 0.125483 Hz
AQ 3.9846387 sec
RG 256
DW 60.800 usec
DE 6.00 usec
TE 294.4 K
D1 1.00000000 sec
TD0 1

======== CHANNEL f1 ========
NUC1 1H
P1 14.00 usec
PL1 -0.90 dB
SFO1 400.1324710 MHz

F2 - Processing parameters
SI 32768
SF 400.1299939 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00
C13CPD CDCl3 {D:\CRR} KOPAL 1

Current Data Parameters
NAME SMR-I-192-2
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110324
Time 12.04
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 256
DS 4
SMR 24038.461 Hz
FIDRES 0.366798 Hz
AQ 1.3631988 sec
RG 1030
DW 20.800 usec
DE 6.00 usec
TE 294.8 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
SP01 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SP02 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127561 MHz
CKW 0
SSB 1.00 Hz
LB 0
GB 0
PC 1.40
Current Data Parameters

<table>
<thead>
<tr>
<th>NAME</th>
<th>SMR-1-187-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPNO</td>
<td>1</td>
</tr>
<tr>
<td>PROCNO</td>
<td>1</td>
</tr>
</tbody>
</table>

F2 - Acquisition Parameters

<table>
<thead>
<tr>
<th>Date</th>
<th>20110314</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>12.08</td>
</tr>
<tr>
<td>INSTRUM</td>
<td>spect</td>
</tr>
<tr>
<td>PROBHD</td>
<td>5 mm BBO BB-1H</td>
</tr>
<tr>
<td>PULPROG</td>
<td>zg30</td>
</tr>
<tr>
<td>TD</td>
<td>65536</td>
</tr>
<tr>
<td>SOLVENT</td>
<td>CDCl3</td>
</tr>
<tr>
<td>NS</td>
<td>16</td>
</tr>
<tr>
<td>DS</td>
<td>2</td>
</tr>
<tr>
<td>SWH</td>
<td>8223.685 Hz</td>
</tr>
<tr>
<td>PDERES</td>
<td>0.125483 Hz</td>
</tr>
<tr>
<td>AQ</td>
<td>3.9846387 sec</td>
</tr>
<tr>
<td>RG</td>
<td>161</td>
</tr>
<tr>
<td>DW</td>
<td>60.800 usec</td>
</tr>
<tr>
<td>DE</td>
<td>6.00 usec</td>
</tr>
<tr>
<td>TE</td>
<td>294.5 K</td>
</tr>
<tr>
<td>D1</td>
<td>1.00000000 sec</td>
</tr>
<tr>
<td>TD0</td>
<td>1</td>
</tr>
</tbody>
</table>

CHANNEL f1

<table>
<thead>
<tr>
<th>NUC1</th>
<th>1H</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>14.00 usec</td>
</tr>
<tr>
<td>PL1</td>
<td>-0.90 dB</td>
</tr>
<tr>
<td>SF01</td>
<td>400.1324710 MHz</td>
</tr>
</tbody>
</table>

F2 - Processing parameters

<table>
<thead>
<tr>
<th>SI</th>
<th>32768</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>400.13000002 MHz</td>
</tr>
<tr>
<td>WDW</td>
<td>EN</td>
</tr>
<tr>
<td>SSB</td>
<td>0</td>
</tr>
<tr>
<td>LB</td>
<td>0.30 Hz</td>
</tr>
<tr>
<td>GB</td>
<td>0</td>
</tr>
<tr>
<td>PC</td>
<td>1.00</td>
</tr>
</tbody>
</table>
PROTON CDCl₃ \{D:\CRR\} KOPAL 1

Current Data Parameters
NAME: SMR-I-194-2
EXPNO: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 20110324
Time: 15.40
INSTRUM: spect
PROBHD: 5 mm BBO BB-1H
PULPROG: zg30
TD: 65536
SOLVENT: CDCl₃
NS: 16
DS: 2
SWH: 8233.685 Hz
FIDRES: 0.125483 Hz
AQ: 3.9846387 sec
RG: 256
DW: 60.800 usec
DE: 6.00 usec
TE: 294.2 K
D1: 1.00000000 sec
TD0: 1

== CHANNEL f1 ==
NUC1: 1H
P1: 14.00 usec
PL1: -0.90 dB
SF01: 400.1324710 MHz

F2 - Processing parameters
SI: 32768
SF: 400.1300034 MHz
WDW: EM
SSB: 0
LB: 0.30 Hz
GB: 0
PC: 1.00
C13CPD CDCl3 \{D:\CRR\} KOPAL 1

Current Data Parameters
NAME: SMR-ALPHA
EXPNO: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 20111221
Time: 11.46
INSTRUM: spect
PROBHD: 5 mm BBO BB-1H
PULPROG: zgpg30
TD: 65536
SOLVENT: CDCl3
NS: 512
DS: 4
SNR: 24038.461 Hz
PTRES: 0.366798 Hz
AQ: 1.3631988 sec
RG: 57
DW: 20.800 usec
DE: 6.00 usec
TE: 297.8 K
D1: 2.00000000 sec
d11: 0.03000000 sec
DELTA: 1.89999998 sec
TD0: 1

====== CHANNEL f1 ======
NUC1: 13C
P1: 9.50 usec
PL1: -0.60 dB
SF01: 100.6228298 MHz

====== CHANNEL f2 ======
CPDPRG2: waltz16
NUC2: 1H
PCPD2: 90.00 usec
PL12: 15.60 dB
PL13: 15.60 dB
PL2: -0.90 dB
SF02: 400.1316005 MHz

F2 - Processing parameters
SI: 32768
SF: 100.6127594 MHz
ROW: EM
SSB: 0
LB: 1.00 Hz
GB: 0
PC: 1.40

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
PROTON CDCl3 {D:\CRR} KOPAL 1
Current Data Parameters
NAME SMR-I-206-2
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110420
Time 12.22
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 512
DS 4
SWH 24038.461 Hz
FIDRES 0.366798 Hz
AQ 1.3631988 sec
RG 50.8
DW 20.800 usec
DE 6.00 usec
TE 295.2 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -8.60 dB
SP01 100.6228298 MHz

======== CHANNEL f2 ========
CPDPKG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SP02 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127538 MHz
NOW 0
SSB 0
LB 1.60 Hz
GB 0
PC 1.40
PROTON DMSO (D:\CRR) crr 1
C13CPD DMSO {D:\CRR} KOPAL 1

Current Data Parameters
NAME SMR-I-214-2
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110525
Time 12.02
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT DMSO
NS 512
DS 4
SNR 24038.461 Hz
FTRES 0.366798 Hz
AQ 1.3631988 sec
RG 50.8
DM 20.800 usec
DE 6.00 usec
TE 296.2 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -8.60 dB
SF01 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SF02 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6128109 MHz
WOK SM
SSB 0
LB 1.60 Hz
GB 0
FC 1.40
C13CPD DMSO {D:\CRR} KOPAL 1

Current Data Parameters
NAME SMR-I-215-2
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110525
Time 12.57
INSTRM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT DMSO
NS 512
DS 4
SNR 24038.461 Hz
TR/TRES 0.366798 Hz
AQ 1.3631988 sec
GS 50.8
DN 20.800 usec
DE 6.00 usec
TE 295.7 K
D1 2.0000000 sec
d11 0.0000000 sec
DELTA 1.8999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -8.60 dB
SP01 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 -15.60 dB
PL2 -0.90 dB
SP02 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6228298 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
2-F Pthalimide cyclized
PROTON Acetone
C13CPD DMSO {D:\CRR} KOPAL 1

Current Data Parameters
NAME: SMR-BETCAR
EXPHD: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 20120112
Time: 9.30
INSTRUM: spect
PROBHD: 5 mm BBO BB-1H
PULPROG: zgpg30
TD: 65536
SOLVENT: DMSO
NS: 17000
DS: 4
SNR: 24038.461 Hz
FTRES: 0.366798 Hz
AQ: 1.3631988 sec
RG: 50.8
DN: 20.800 usec
DE: 6.00 usec
TE: 293.9 K
D1: 2.00000000 sec
d11: 0.03000000 sec
DELTA: 1.89999998 sec
TD0: 1

---------- CHANNEL f1 ----------
NUC1: 13C
P1: 9.50 usec
PL1: -8.60 dB
SP01: 100.6228298 MHz

---------- CHANNEL f2 ----------
CPDPRG2: waltz16
NUC2: 1H
PCPD2: 90.00 usec
PL12: 15.60 dB
PL13: 15.60 dB
PL2: -0.90 dB
SP02: 400.1316005 MHz

F2 - Processing parameters
SI: 32768
SF: 100.6228113 MHz
NOW: 8M
SSB: 0
LB: 1.00 Hz
GB: 0
PC: 1.40
PROTON CDCl3 [D:\CRR] KOPAL 1
4-F Succinimide cyclized
PROTON Acetone
Current Data Parameters
NAME SMR-I-188
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110321
Time 11.02
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT DMSO
NS 512
DS 4
SNR 24038.461 Hz
FT0RES 0.366798 Hz
AQ 1.3631988 sec
RG 1290
DN 20.800000 sec
DE 6.00 usec
TE 295.5 K
D1 2.000000000 sec
d11 0.030000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
SFO1 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SFO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6128210 MHz
RGB 8M
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
C13CPD CDC13 {D:\CRR} KOPAL 1

Current Data Parameters
NAME SMR-I-189-2
EXPHD 4
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110321
Time_ 17.11
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 123
DS 4
SNR 24038.48 Hz
PT1RES 0.366798 Hz
AQ 1.3631988 sec
RG 912
DN 20.800 usec
DE 6.00 usec
TE 294.6 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
SFO1 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SFO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6132883 MHz
WOW EM
SSB 0
LB 1.00 Hz
GB 0
FC 1.40
2F Succinimide cyclized
PROTON Acetone \(D:\text{data} \) nmr 1
C13CPD CDCl3 {D:\CRR} KOPAL 1

Current Data Parameters
NAME SMR-CON-D
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120221
Time 21.37
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 13497
DS 4
SNR 24038.461 Hz
FTRES 0.366798 Hz
AQ 1.3631988 sec
RG 50.8
DN 20.800 usec
DE 6.00 usec
TE 298.1 K
D1 2.00000000 sec
d11 0.00000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
FO1 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
FO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127673 MHz
ROW 0
SSB 0
LB 1.60 Hz
GB 0
PC 1.40
Current Data Parameters
NAME SMR-HEX
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20110809
Time 14.22
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 346
DS 4
SNR 24038.46 Hz
FIDRES 0.366798 Hz
AQ 1.3631988 sec
RG 1150
DW 20.800 usec
DE 6.00 usec
TE 298.0 K
D1 2.00000000 sec
d11 0.03000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -0.60 dB
SPO1 100.6228298 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL12 15.80 dB
PL13 15.80 dB
PL2 -0.90 dB
SPO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127532 MHz
WOK SM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
C13CPD CDCl3 {D:\CRR} KOPAL 1
Current Data Parameters
NAME SMR-AL
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20111125
Time 12.10
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 512
DS 4
SWH 24038.461 Hz
FTDRES 0.366798 Hz
AQ 1.3631988 sec
RG 2050
DW 20.800 usec
DE 6.00 usec
TE 295.8 K
D1 2.00000000 sec
d11 0.00000000 sec
DELTA 1.89999998 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.50 usec
PL1 -8.60 dB
SP01 100.6228298 MHz

======== CHANNEL f2 ========
NUC2 1H
PCPD2 90.00 usec
PL12 15.60 dB
PL13 15.60 dB
PL2 -0.90 dB
SP02 400.1316005 MHz

F2 - Processing parameters
S1 32768
SF 100.6127541 MHz
ROW SM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
C13CPD CDCl3 {D:\CRR} KOPAL 1