Elaiolide: Synthesis of monomeric unit

Jhillu Singh Yadav,* Gangadhara Rao. Yarrapothu and Rajender. Vemula

*Organic Chemistry Division-I, Indian Institute of Chemical Technology (CSIR), Hyderabad – 500 007, India,
yadavpub@iict.res.in
Table of Contents:

<table>
<thead>
<tr>
<th>Ser. No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental Section</td>
<td>3-11</td>
</tr>
<tr>
<td>1</td>
<td>1H and 13C NMR of 9</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>1H and 13C NMR of 10</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>1H and 13C NMR of 11</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>1H and 13C NMR of 12</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>1H and 13C NMR of 13</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>1H and 13C NMR of 4</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>1H and 13C NMR of 8</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>1H and 13C NMR of 14</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>1H and 13C NMR of 15</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>1H and 13C NMR of 7a</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>1H and 13C NMR of 16</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>1H and 13C NMR of 6a</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>1H and 13C NMR of TBS Alcohol</td>
<td>24</td>
</tr>
<tr>
<td>14</td>
<td>1H and 13C NMR of 6b</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>1H and 13C NMR of 3</td>
<td>26</td>
</tr>
</tbody>
</table>
Experimental Section

General Remarks: Unless otherwise mentioned, all reactions were carried out under an inert atmosphere of argon or nitrogen using standard syringe, septa and cannula techniques. All glassware was flame/oven-dried and cooled under an inert atmosphere of nitrogen unless otherwise stated. Solvents THF, Et₂O were distilled from Na-benzophenone ketyl, CH₂Cl₂, DMF, were distilled from CaH₂, under N₂ atmosphere. Column chromatography was performed using silica gel (60-120 mesh) and the column was usually eluted with ethyl acetate-petroleum ether. Analytical thin layer chromatography (TLC) was performed on precoated silica gel-60 F₂₅₄ (0.5 mm) glass plates. Visualization of the spots on TLC plates was achieved either by exposure to iodine vapor or UV light or by dipping the plates to H₂SO₄-β-naphthol or MeOH-anisaldehyde-H₂SO₄-acetic acid or and heating the plates at 120 °C. ¹H NMR spectra were recorded at 500, 400, 300, 200 MHz & ¹³C NMR spectra were recorded at 100, 75, 50 MHz in CDCl₃ using Tetramethyldisilane as the reference standard. s, brs, d, dd, ddd, dt, t, q, quin, and m refer to singlet, broad singlet, doublet, doublet of doublet, doublet of doublet of doublet, doublet of triplet, triplet, quartet, quintet and multiplet respectively unless otherwise mentioned. Infrared spectra were recorded on Perkin-Elmer Infrared–683 spectrophotometer with NaCl optics. Spectra were calibrated against the polystyrene absorption at 1610cm⁻¹. Samples were scanned neat, KBr wafers or in chloroform as a thin film. The optical rotations were measured on JASCO DIP-360 Digital Polarimeter. Mass spectra were recorded on Micro Mass VG-7070H mass spectrometer for ESI and are given in mass units (m/z). High resolution mass spectra (HRMS) [ESI+] were obtained using either a TOF or a double focusing spectrometer.

(2S,3R,4R,5S,6S)-3-(benzoyloxy)-5-hydroxy-N-methoxy-7-(4-methoxybenzoyloxy)-N-2,4,6-tetramethylheptanamide (9): AlMe₃ (9.7 mL, 2.0 M in toluene, 19.42 mmol) was added over a 10 min period to a stirred suspension of MeONHMe.HCl (1.89 g, 19.42 mmol) in DCM (50 mL) at 0 °C, and mixture was stirred for 1 h allowing the temperature to raise to room temperature. Then, a solution of epi-lactone 5 (2.0 g, 4.85 mmol) in DCM (40 mL + 5mL rinse) was cannulated into the suspension drop wise and stirred for 3 h. After the reaction was completed, pH 8.0 phosphate buffer (20 mL) (1mL per mmol of AlMe₃) was added and the stirring was continued for 15 min. The reaction mixture was diluted with CHCl₃ (20 mL), filtered through a pad of celite and washed thoroughly with CHCl₃. The aqueous layer was extracted with CHCl₃ (3x 30 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated in vacuo. The residue obtained was purified by silica gel column.

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012
chromatography using 23% EtOAc/hexane to give the amide 9 (2.26 g) in 98.48% yield. Rf = 0.25 (30% EtOAc/hexane). [α]D 23° = -8.2 (c = 1.9, CHCl3); IR (KBr): νmax 3462, 2964, 2930, 1657, 1614, 1512, 1459, 1415, 1381, 1247, 1174, 1078, 1034, 993, 820, 755 cm⁻¹; 1H NMR (300 MHz, CDCl3): δ 7.40 – 7.27 (m, 5H, Ar), 7.24 (d, J = 8.5 Hz, 2H, OCH2ArOMe), 6.85 (d, J = 8.5 Hz, 2H, OCH2ArOMe), 4.65 (s, J = 8.3 Hz, 2H, OCH2ArOMe), 4.42 (s, J = 8.0 Hz, 2H, OCH2Ar), 3.93 – 3.83 (m, 2H, -OCOCH3), 3.79 (s, 3H, OCH3Ar), 3.63 – 3.53 (m, 4H, -NOCH3, -CH(OH)-), 3.49 (dd, J = 8.7, 5.8 Hz, 1H, -CHOBn), 3.40 – 3.23 (m, 1H, CH3CHCO), 3.16 (s, 3H, -NCH3), 1.93 – 1.78 (m, 1H, -CH2CH(CH3)), 1.74 (dd, J = 6.1, 3.7 Hz, 1H, -(CH3)CHCHOBn), 1.29 (d, J = 6.8 Hz, 3H, (OBn)CHCH(C3H)), 1.05 (d, J = 7.0 Hz, 3H, -(CH(CH3)2)CH-); 13C NMR (75 MHz, CDCl3): δ 176.30, 158.96, 137.82, 130.73, 129.13, 128.43, 127.99, 127.84, 113.57, 86.61, 76.50, 73.68, 72.88, 72.41, 61.41, 55.21, 38.67, 36.65, 36.54, 32.15, 14.07, 13.57, 10.68; ESI-MS (m/z): 474 [M+H]+; HRMS: calculated for C27H40NO6 [M+H]+: 435.2855 found 435.2859.

(2S,3R,4S)-3-(benzoxyl)-N-methoxy-4-((4S,5S)-2-(4-methoxybenzyl)-5-methyl-1,3-dioxan-4-yl)-N,2-dimethylpentanamide (10): To a stirred solution of azeotropically dried Weinreb amide 9 (2.16 g, 4.56 mmol) in DCM (40 mL) at 0 °C was added DDQ (1.14 g, 5.02 mmol) at a time. The chocolate colored suspension was slowly warmed to RT and stirred for 2 h. Then the reaction mixture was quenched slowly by the addition of aq. Sat. NaHCO3 solution (100 mL), stirred for 15 min, the layers were separated and aqueous layer was extracted with DCM (4×50 mL). The combined organic layers were given brine wash, dried over anhy. Na2SO4, filtered, concentrated under reduced pressure and purification of resulted residue by column chromatography on silica gel using 20% EtOAc/hexane furnished PMB acetal 10 (1.87 g) in 87.0 % yield. [α]D 24° +54.9 (c = 1.35, CHCl3); IR (KBr): νmax 2926, 2848, 1710, 1613, 1519, 1416, 1387, 1250, 1218, 1093, 1032, 829 cm⁻¹; 1H NMR (300 MHz, CDCl3): δ 7.42 – 7.23 (m, 7H, Ar), 6.87 (d, J = 8.8 Hz, 2H, Ar), 5.28 (s, 1H, MeOArCHO-), 4.59 (d, J = 10.9 Hz, 1H, ArCH3(CH3)), 4.34 (d, J = 10.9 Hz, 1H, ArCH3(CH3)), 4.07 (dd, J = 11.1, 4.6 Hz, 1H, -OCH2HbCH(CH3)), 3.94 (dd, J = 9.3, 3.1 Hz, 1H, OCH2HbCH(CH3)), 3.81 (s, 3H, ArOCH3), 3.78 (dd, J = 9.8, 1.3 Hz, 1H, -CHOCHArMe), 3.63 (s, 3H, -NOCH3), 3.44 (t, J = 11.1 Hz, 1H, -CHOBn), 3.17 (s, 3H, -NCH3), 3.10 (qd, J = 7.0, 2.8 Hz, 1H, CH3CHCO-), 2.10 – 1.97 (m, 1H, -CH2CH(CH3)), 1.97 – 1.87 (m, 1H, -(CH3)CHCHOBn), 1.21 (d, J = 7.0 Hz, 3H, CH(CH3)CO), 0.99 (d, J = 7.0 Hz, 3H, -CH(CH3)CH-OBn), 0.71 (d, J = 6.7 Hz, 3H, -CH2CH(CH3)CH); 13C NMR (75 MHz, CDCl3): δ 7.02, 159.70, 138.68, 131.58, 128.22, 128.18, 127.45, 127.30, 113.39, 100.66, 81.40, 79.81, 74.22, 73.23, 61.02, 55.24, 37.93, 37.31, 32.59, 30.50, 11.97, 10.41, 9.94; ESI-MS (m/z): 494 [M+Na]+; HRMS: calculated for C27H38NO6Na [M+Na]+: 435.2147 found 435.2146.
(3S,4R,5S)-4-(benzylxy)-5-((4S,5S)-2-(4-methoxybenzyl)-5-methyl-1,3-dioxan-4-yl)-3-methyl hexan-2-one (11): The above PMB acetal 10 (1.77 g, 3.75 mmol) was taken in Et₂O (30 mL) and cooled to −15 °C using ice-salt mixture. MeLi (15.0 mL, 1.0M solution in Et₂O) was added drop wise over a 15 min period and the reaction mixture was stirred for ½ h at −15 °C. Then, sat. aq. solution of NH₄Cl (40 mL) was added slowly at 0 °C, the layers were separated, aqueous layer was extracted with Et₂O (3x30 mL), the combined organic layers were washed with brine, dried over anhy.Na₂SO₄ and filtered; the solvent was removed in vacuo. The resulting residue was purified on silica gel column by eluting with 15% EtOAc/hexane to furnish methyl ketone 11 (1.6 g) in quantitative yield. [α]D²⁴ +103.2 (c = 1.25, CHCl₃); IR (KBr): ν max 2945, 2853, 1724, 1713, 1537, 1403, 1271, 1133, 1051, 829 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, J = 8.5 Hz, 2H, Ar), 7.36 – 7.22 (m, 5H, Ar), 6.90 (d, J = 8.5 Hz, 2H, Ar), 5.32 (s, 1H, MeOArC₄H₄O-), 4.43 (ABq, J = 11.2 Hz, 2H, ArCH₂), 4.12 – 4.00 (m, 2H, -OC₄H₄CH(CH₃)), 3.81 (s, 3H, C₃H₃OAr), 3.77 (dd, J = 10.2, 1.3 Hz, 1H, -C₄H₄OCHArOMe), 3.45 (t, J = 11.0 Hz, 1H, -C₄H₄OBn), 2.71 (qd, J = 6.7, 2.2 Hz, 1H, CH₃CCH₂O-), 2.16 (s, 3H, -COC₃H₃), 2.12 – 2.00 (m, 1H, -CH₂C(CH₃)₃), 1.94 (dd, J = 15.0, 7.7 Hz, 1H, -(CH₂)CHCHOBn), 1.18 (d, J = 7.0 Hz, 3H, -CH(CH₃)CO-), 0.96 (d, J = 7.0 Hz, 3H, -CH(CH₃)CH-OBn), 0.73 (d, J = 6.7 Hz, 3H, CH₂CH(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 11.66, 159.81, 138.49, 131.39, 128.31, 127.64, 127.53, 127.32, 113.53, 100.84, 81.37, 79.79, 73.96, 73.21, 55.26, 49.13, 30.49, 28.95, 11.98, 9.86, 9.41; ESI-MS (m/z): 449 [M+Na]⁺; HRMS: calculated for C₂₆H₃₄O₅Na [M+Na]⁺: 449.2303 found 449.2296.

(2S,3S,4R,5S,6R)-5-(benzylxy)-3-(4-methoxybenzylxy)-2,4,6-trimethyloctane-1,7-diol (12): DIBAL-H (6.0 mL, 25% Sol. in Toluene, 10.56 mmol) was added drop wise to the stirred solution of methyl ketone 11 (1.5 g, 3.52 mmol) in DCM (50 mL) at 0 °C and the reaction mixture was allowed to warm to RT. After 1 h, sat. aq. solution of sodium potassium tartarate (70 mL) was added carefully at 0 °C to quench the reaction. The resulted emulsion type mixture was stirred vigorously until clear separation of two layers was appeared (approx. 1 h). Then the layers were taken in separating funnel, DCM layer was separated, aqueous layer was extracted thoroughly with DCM (5x50 mL), the organic layers were washed with brine, dried over anhy. Na₂SO₄. The volatiles were removed in vacuo; resulted residue was purified by silica gel column chromatography using 25 % EtOAc/hexane to furnish pure diol 12 as a colorless liquid (1.347 g, 89.0 % yield). IR (KBr): ν max 3547, 2942, 2935, 2871, 1593, 1485, 1385, 1238, 1108 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.44 – 7.16 (m, 7H, Ar), 6.96 – 6.77 (m, 2H, Ar), 4.77 (d, J = 11.7 Hz, 1H, ArCH₃CH₂O), 4.53 (dd, J = 11.3, 3.5 Hz, 2H, MeOArCH₂), 4.44 (d, J = 10.8 Hz, 1H, ArCH₃CH₂O), 3.84 (dd, J = 9.7, 1.7 Hz, 1H, -CHOCH₂ArOMe), 3.81 – 3.73 (m, 4H, CH₃OAr, -
(2R,3R,4R,5R,6S)-5-(benzyloxy)-3-(4-methoxybenzyloxy)-2,4,6-trimethyl-7-oxooctanal (13): DMSO (2 mL) was added to IBX (3.25 g, 11.6 mmol) at room temperature and the suspension was stirred for 15 min. Then THF (10 mL) was added, after 5 min of stirring, diol 12 (1.25 g, 2.90 mmol) in THF (13 mL + 5 mL rinse) was added drop wise through cannula and the reaction mixture was stirred for 2 h. After which time the reaction mixture was diluted with ether (15 mL), stirred for 15 min, filtered through a pad of celite and washed thoroughly with ether. The filtrate was washed with ice-cold water (10 mL) and the aqueous layer was back extracted with ether (3x20 mL). The combined organic layers were washed with brine, dried over anhy. Na$_2$SO$_4$, filtered, concentrated under reduced pressure. The crude residue obtained was chromatographed on silica gel column using 18% EtOAc/hexane to furnish pure keto-aldehyde 13 (1.07 g, 86% yield). R$_f$ = 0.2 (20% EtOAc/hexane). $[\alpha]_D^{24} +46.7$ (c = 1.05, CHCl$_3$); IR (KBr): ν_{max} 2961, 2947, 2853, 1734, 1724, 1571, 1466, 1251, 1093 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$): δ 9.74 (d, $J = 2.5$ Hz, 1H, -CHO), 7.39 – 7.22 (m, 5H, Ar), 7.18 (d, $J = 8.5$ Hz, 2H, Ar), 6.85 (d, $J = 8.6$ Hz, 2H, Ar), 4.49 – 4.33 (m, 3H, MeOArCH$_2$, ArCH$_2$H$_8$O-), 4.25 (d, $J = 11.2$ Hz, 1H, ArCH$_2$H$_8$O-), 4.00 (dd, $J = 7.9$, 1.8 Hz, 1H, -CHOBn), 3.96 (dd, $J = 8.9$, 3.0 Hz, 1H, -CHOArOMe), 3.78 (s, 3H, CH$_3$OAr), 2.73 (qd, $J = 9.0$, 2.6 Hz, 2H, -CHOCH$_3$, -CH(CH$_3$CHO), 2.22 (s, 3H, -COCH$_3$), 1.90 – 1.76 (m, 1H, MeOArCH$_2$OCHCH(CH$_3$)CHOBn), 1.19 (d, $J = 7.1$ Hz, 3H, -CH(CH$_3$)COCH$_3$), 1.04 (d, $J = 7.0$ Hz, 3H, -CH(CH$_3$CHO), 0.99 (d, $J = 7.1$ Hz, 3H, -CHCH(CH$_3$)CHOAr); 13C NMR (75 MHz, CDCl$_3$): δ 211.41, 204.52, 159.16, 138.14, 130.43, 128.97, 128.36, 127.58, 127.36, 113.78, 80.61, 79.44, 73.36, 72.83, 55.24, 50.17, 49.32, 39.37, 28.80, 11.48, 11.11, 9.87; ESI-MS (m/z): 449 [M+Na]$^+$; HRMS: calculated for C$_{28}$H$_{34}$O$_5$ Na [M+Na]$^+$: 449.2298 found 449.2309.

(2E,4E,6S,7S,8S,9S)-ethyl-9-(benzyloxy)-7-(4-methoxybenzyloxy)-6,8-dimethyl-11-oxododeca-2,4-dienoate (4): LiHMDS (5.63 mL, 1.0 M solution in THF, 5.63 mmol) was added drop wise to the stirred solution of phosphonate ester (1.46 g, 5.87 mmol) in THF (20 mL) at -78°C. After $1/2$ hr, keto-aldehyde 13 (1.0 g, 2.35 mmol) in THF (10 mL) was added drop wise by cannula and the resulting yellow orange colored mixture was stirred at -78°C for 3 h. After this
time the reaction mixture was quenched with aq. sat. NH₄Cl (10 mL) and extracted with EtOAc (3x 25 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was chromatographed over silica gel (15% EtOAc/hexane) to give keto-ester 4 (1.04 g) in 85% yield as pale yellow color oil. \(\alpha_d^2 +29.3 \) (c = 0.95, CHCl₃), ¹H NMR (300 MHz, CDCl₃): \(\delta \) 7.39 – 7.21 (m, 5H, Ar), 7.18 (d, \(J = 8.5 \) Hz, 1H, EtOOC-CH=CH-), 6.84 (d, \(J = 8.5 \) Hz, 2H, Ar), 6.28 – 6.09 (m, 2H, -CH=CH-CH(CH₃)), 5.78 (d, \(J = 15.3 \) Hz, 1H, EtOOC-CH=CH-), 4.46 (d, \(J = 11.1 \) Hz, 1H, -CH₃ArOMe), 4.35 (dd, \(J = 17.0, 10.5 \) Hz, 1H, -CH=CH(CH₂)-), 4.21 (tdd, \(J = 5.5, 3.7, 1.8 \) Hz, 1H, -CH=CH(CH₂)-), 3.91 (dd, \(J = 10.2, 7.4 \) Hz, 1H, -OCH₃CH(CH(OH)-), 2.45 (s, 3H, CH₃ArSO₃⁻); ¹³C NMR (75 MHz, CDCl₃): \(\delta \) 145.05, 134.56, 132.47, 129.88, 127.88, 117.97, 113.70, 81.89, 79.22, 72.60, 60.19, 49.25, 45.37, 39.18, 28.79, 17.02, 14.28, 11.07, 9.81; ESI-MS (m/z): 545 [M+Na]⁺; HRMS: calculated for C₃₂H₄₂O₆Na [M+Na]⁺: 545.2874 found 545.2876.

(S)-2-hydroxybut-3-enyl 4-methylbenzenesulfonate (14): To a stirred solution of diol 8 (2.0 g, 0.02 mol) in DCM (30 mL) was added NEt₃ (9.5 mL, 0.07 mol) drop wise, followed by Bu₂SnO (0.56 g, 2.27 mmol) at 0 °C. After ½ hr, Ts-Cl (4.77 g, 0.02 mmol) in DCM (150 mL) was cannulated drop wise into the above solution over ½ hr period at 0 °C and stirring was continued at the same temperature for 7 h. After this time, the reaction mixture was diluted with DCM (70 mL), washed with water, aqueous layer was extracted with DCM (3x50 mL), and combined organic layers were given brine wash, dried over anhy. Na₂SO₄, filtered, concentrated under reduced pressure, purified over silica gel (30% EtOAc/hexane) to furnish tosyl ether 14 (4.8 g, 87%) as yellow color oil. \(\alpha_d^2 +31 \) (c = 2.5, CHCl₃); IR (KBr): \(\nu_{max} \) 3453, 2926, 2855, 1647, 1598, 1358, 1178, 1096, 972, 817, 667 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): \(\delta \) 7.80 (d, \(J = 8.3 \) Hz, 2H, Ar), 7.36 (d, \(J = 8.1 \) Hz, 2H, Ar), 5.75 (ddd, \(J = 17.0, 10.5, 5.5 \) Hz, 1H, -CH₃ArOMe), 4.40 (dd, \(J = 5.5, 3.7, 1.8 \) Hz, 1H, -CH=CH(CH₂)-), 4.06 (dd, \(J = 10.2, 3.4 \) Hz, 1H, -OCH₃H₂CH(OH)-), 3.91 (dd, \(J = 10.2, 7.4 \) Hz, 1H, -OCH₃H₂CH(OH)-), 2.45 (s, 3H, CH₃ArSO₃⁻); ¹³C NMR (75 MHz, CDCl₃): \(\delta \) 145.05, 134.56, 132.47, 129.88, 127.88, 117.97,
ESI-MS (m/z): 265 [M+Na]+; HRMS: calculated for C\textsubscript{11}H\textsubscript{14}O\textsubscript{4}S Na [M+Na]+: 265.0510 found 265.0505.

(S)-2-(tert-butyldiphenylsilyloxy) but-3-enyl 4-methylbenzenesulfonate (15): To a solution of tosyl ether 14 (2.2 g, 9.09 mmol) and imidazole (1.55g, 22.7 mmol) in DCM (25 mL) at 0 °C was added a solution TBDPSCl (2.6 mL, 10.0 mmol) in DCM (2.5 mL). The reaction mixture was warmed to room temperature where stirring was continued for 3 h. The reaction mixture was quenched with saturated aqueous NH\textsubscript{4}Cl (15 mL), extracted with Et\textsubscript{2}O (3x30 mL), dried (MgSO\textsubscript{4}), filtered, concentrated, and chromatographed (silica gel, 14% EtOAc/hexane) to afford 4.3 g of silyl tosyl ether 15 (quantitative yield) as a colorless oil. R\textsubscript{f} = 0.6 (30% EtOAc/hexane).

\[
\text{[a]}^\text{D}_{23} -11.6 \quad (c = 1.2, \text{CHCl}_3); \quad \text{IR (KBr)}: \nu_{\text{max}} 3070, 2932, 2858, 1472, 1427, 1365, 1150, 1111, 1030, 995, 960, 822, 701 \text{ cm}^{-1}; \quad ^1\text{H} \text{NMR (300 MHz, CDCl}_3): \delta 7.67 – 7.52 (m, 6H, Ar), 7.46 – 7.22 (m, 8H, Ar), 5.70 (ddd, J = 16.9, 10.5, 6.3 Hz, 1H, -CH=CH\textsubscript{2}-), 5.08 (d, J = 8.1 Hz, 1H, -CH=CH\textsubscript{2}-), 4.27 (q, J = 6.0 Hz, 1H, -CH\textsubscript{2}OH), 3.89 (dd, J = 9.7, 6.0 Hz, 1H, -OCH\textsubscript{2}H\textsubscript{3}ArSO\textsubscript{3}^-), 2.42 (s, 3H, C\textsubscript{H}_3ArSO\textsubscript{3}^-), 1.03 (s, 9H, -C(C\textsubscript{H}_3)_3); \quad ^{13}\text{C} \text{NMR (75 MHz, CDCl}_3): \delta 144.57, 135.83, 134.72, 133.18, 132.79, 129.66, 127.88, 127.51, 117.61, 127.63, 127.42, 72.39, 71.92, 26.81, 26.49, 21.57, 19.22.; \quad \text{ESI-MS (m/z): 503 [M+Na]+; HRMS: calculated for C}_{27}H_{36}NO_4SSi [M+NH}_4^+]: 498.2129 found 498.2127.

(R)-(but-3-en-2-yloxy)(tert-butyl)diphenylsilane (7a): NaBH\textsubscript{4} (1.3 g, 0.03 mol) was added to the DMSO (25 mL) solution of TBDPS ether 15 (4.1g, 8.54 mmol) at 0 °C. The suspension was refluxed for 4 h at 60 °C. The reaction mixture was cooled to RT, diluted with Et\textsubscript{2}O (100 mL), quenched with aqu. sat. NH\textsubscript{4}Cl (25 mL), extracted into Et\textsubscript{2}O (3x70 mL), washed with brine, dried (Na\textsubscript{2}SO\textsubscript{4}), filtered and solvent was removed under reduced pressure. The residue remained was chromatographed over silica gel (4% EtOAc/hexane) to afford olefin 7a (2.05 g) in 77% yield. R\textsubscript{f} = 0.8 (20% EtOAc/hexane).

\[
\text{[a]}^\text{D}_{23} +1.0 \quad (c = 0.65, \text{CHCl}_3); \quad \text{IR (KBr)}: \nu_{\text{max}} 2960, 2861, 1427, 1220, 1108, 823 773 \text{ cm}^{-1}; \quad ^1\text{H} \text{NMR (300 MHz, CDCl}_3): \delta 7.74 – 7.62 (m, 4H, Ar), 7.47 – 7.30 (m, 6H, Ar), 5.86 (ddd, J = 17.0, 10.4, 5.4 Hz, 1H, -CH=CH\textsubscript{2}-), 5.09 (d, J = 17.2 Hz, 1H, -CH=CH\textsubscript{2}H\textsubscript{3}), 4.95 (d, J = 10.4 Hz, 1H, -CH=CH\textsubscript{2}H\textsubscript{3}), 2.42 (s, 3H, C\textsubscript{H}_3ArSO\textsubscript{3}^-); \quad ^{13}\text{C} \text{NMR (75 MHz, CDCl}_3): \delta 142.44, 135.87, 134.72, 133.18, 132.79, 129.66, 127.88, 127.51, 117.61, 127.63, 127.42, 72.39, 71.92, 26.81, 26.49, 21.57, 19.22.; \quad \text{ESI-MS (m/z): 333 [M+Na]+; HRMS: calculated for C}_{20}H_{26}O\textsubscript{3}Si [M+Na]^+: 333.1650 found 333.1660.**
(2S,3R)-3-(tert-butyldiphenylsilyloxy)-2-ethylbutan-1-ol (16): Olefin 7a (1.9 g, 6.13 mmol) was dissolved in Et₂O (100 mL) and the solution was cooled to 0 °C. Ethyl magnesium bromide (12.3 mL, 2.0 M sol in Et₂O, 0.02 mol) was added drop wise by syringe and the reaction mixture was allowed to warm to 25 °C over a period of 1 h, after which time Cp₂ZrCl₂ (89.5 mg, 0.30 mmol) was added. The suspension was stirred at 25 °C for 12 h. The solution was cooled to 0 °C, a gentle stream of O₂ gas (dried over P₂O₅) was bubbled through the reaction mixture for ½ h at 0 °C and for 1 h at 25 °C. The resultant suspension was diluted with Et₂O (100 mL), washed with 2 N NaOH (25 mL), NH₄Cl (15 mL) and NaHCO₃ (15 mL), dried (Na₂SO₄), filtered, concentrated and the resultant crude containing 9:1 mixture of diastereomers was purified by column chromatography (silica gel, 10% EtOAc/hexanes) to give pure alcohol 16 (1.5 g) in 70 % yield. Rf = 0.15(10% EtOAc/hexane). [α]D₂⁰ = -6.9 (c = 1.4, CHCl₃); IR (KBr): νmax 3485, 2957, 2845, 1434, 1212, 1131, 859, 796 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.69 – 7.56 (m, 4H, Ar), 7.45 – 7.23 (m, 6H, Ar), 3.99 – 3.82 (m, 2H, -C₆H₂OH), 3.66 – 3.49 (m, 1H, CH₃C₆H₂(OTBDPS)-), 2.66 (brs, 1H, 1°-OH), 1.55 – 1.33 (m, 2H, CH₃C₆H₂-), 1.19 (qt, J = 8.6, 4.4 Hz, 1H, -CH(CH₃CH₂)-CH₂OH), 1.01 (d, J = 6.4 Hz, 3H, CH₃CH(OTBDPS)-), 0.98 (s, 9H, -C(CH₃)₃), 0.79 (t, J = 7.4 Hz, 3H, -CH₂C₆H₅); ¹³C NMR (75 MHz, CDCl₃): δ 205.09, 135.89(2C), 134.15, 133.31, 129.83, 129.62, 127.71, 127.47, 69.68, 48.49, 27.00, 21.68, 21.37, 19.26, 12.03; ESI-MS (m/z): 357 [M+H]+; HRMS: calculated for C₂₂H₃₂O₂Si Na [M+Na]+: 379.2064 found 379.2068.

(2R,3R)-3-(tert-butyldiphenylsilyloxy)-2-ethylbutanal (6a): To a well stirred solution of alcohol 16 (0.5 g, 1.40 mmol) in CH₂Cl₂ (15 mL) at rt was added NaHCO₃ (0.35 g, 4.21 mmol) and DMP (0.71 g, 1.68 mmol) and the mixture was stirred for 2 h at rt. The reaction mixture was diluted with Et₂O (20 mL), quenched with sat. sodium thiosulphate (10 mL) and stirred for 15 min. The layers were separated and aqueous layer was extracted with ether (3x25 mL). The combined organic layers were dried (Na₂SO₄), filtered, concentrated under reduced pressure and the residue was purified by chromatography (silica gel, 5% EtOAc/hexane) to afford aldehyde 6a (0.47 g, 95%). Rf = 0.6 (10% EtOAc/hexane). [α]D₂⁰ = -10.1 (c = 0.4, CHCl₃); IR (KBr): νmax 2928, 2857, 1704, 1640, 1427, 1220, 1109, 911 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 9.63 (dd, J = 13.8, 3.3 Hz, 1H, -CHO), 7.60 (ddd, J = 7.5, 5.9, 1.6 Hz, 4H, Ar), 7.44 – 7.23 (m, 6H, Ar), 4.10 – 3.98 (m, 1H, CH₃CHO(OTBDPS)-), 2.10 – 2.00 (m, 1H, -CH(CH₂CH₃)CHO), 1.75 – 1.57 (m, 1H, CH₂CH₃H₂B₂-), 1.54 – 1.40 (m, 1H, CH₂CH₃H₂B₂-), 1.02 (d, J = 6.4 Hz, 3H, CH₂CHO(OTBDPS)-), 0.97 (s, 9H, -C(CH₃)₃), 0.77 (t, J = 7.5 Hz, 3H, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 205.09, 135.89(2C), 134.15, 133.31, 129.83, 129.62, 127.71, 127.47, 69.68,
61.14, 26.93, 21.72, 19.32, 18.90, 11.92; ESI-MS (m/z): 393 [M+K]+; HRMS: calculated for C\textsubscript{22}H\textsubscript{30}O\textsubscript{2}Si Na [M+Na]+: 377.1912 found 377.1908.

(2R,3R)-3-(tert-butyldimethylsilyloxy)-2-ethylbutanal (6b): To a well stirred solution of the above alcohol (0.64 g, 2.77 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (25 mL) at rt was added NaHCO\textsubscript{3} (0.7 g, 8.31 mmol) and DMP (1.41 g, 3.32 mmol) and the mixture was stirred for 2 h at rt. The reaction mixture was diluted with Et\textsubscript{2}O (25 mL), quenched with saturated sodium thiosulphate (10 mL) and stirred for 15 min. The layers were separated and aqueous layer was extracted with ether (3x25 mL). The combined organic layers were dried (Na\textsubscript{2}SO\textsubscript{4}), filtered, concentrated under atmospheric pressure at 20 \degree C and the residue obtained was purified by column chromatography (silica gel, 4% EtOAc/hexane) to afford aldehyde 6b (0.59 g, 92%). \(R_f = 0.65\) (10% EtOAc/hexane). \([\alpha]_D^{24} = 17.2\ (c = 0.5, \text{CHCl}_3)\); IR (neat): \(\nu_{\text{max}}\ 2958, 2930, 2884, 2857, 1710, 1472, 1463, 1377, 1256, 1120, 986, 835, 775\ \text{cm}^{-1};\ 1H \text{NMR} (300 MHz, \text{CDCl}_3): \delta 9.66\ (d, J = 3.9 \text{ Hz}, 1H, -C\text{H}_2\text{O}), 4.11 – 3.96\ (m, 1H, \text{CH}_3\text{C}_\text{H}(\text{OTBS})-), 2.06\ (tt, J = 6.0, 2.9 \text{ Hz}, 1H, -\text{CH}(\text{CH}_2\text{CH}_3)\text{CHO}), 1.70\ (ddq, J = 9.0, 7.1, 1.5 \text{ Hz}, 1H, \text{CH}_3\text{CH}_2\text{H}_\text{B}-), 1.51\ (ddq, J = 12.5, 7.5, 3.8 \text{ Hz}, 1H, \text{CH}_3\text{CH}_2\text{H}_\text{B}-), 1.19\ (d, J = 6.3 \text{ Hz}, 3H, \text{CH}_3\text{CH}(\text{OTBDPS})-), 0.89\ (s, 9H, -C(C\text{H}_3)_3_\text{CH}(\text{OTBDPS})-), 0.85\ (s, 9H, -C(CH_3)_3), 0.40\ (s, 3H, -OSi(CH_3)), 0.04\ (s, 3H, -OSi(CH_3)).\ ^{13}C \text{NMR} (75 MHz, \text{CDCl}_3): \delta 205.59, 68.86, 61.05, 25.70, 22.27, 19.52, 17.93, 11.81, -5.03, -4.17; ESI-MS (m/z): 253 [M+Na]+; HRMS: calculated for C\textsubscript{12}H\textsubscript{27}O\textsubscript{2}Si [M+H]+: 231.1775 found 231.1777.

(2E,4E,6S,7S,8S,9S,13R,14S,15R)-ethyl-9-(benzyloxy)-15-(tert-butyldimethylsilyloxy)-14-ethyl-13-hydroxy-7-(4-methoxybenzyloxy)-6,8-dimethyl-11-oxohexadeca-2,4-dienoate (3): LiHMDS (0.29 mL, 1.0 M solution in THF, 0.29 mmol) was added drop wise to the stirring solution of keto-ester 4 (0.07 g, 0.14 mmol) in THF (2.0 mL) at \(-78 \degree C\) and stirring continued for \(\frac{1}{2}\) hr. After this time, aldehyde 6b (0.07 g, 0.29 mmol) in THF (1 mL + 1 mL rinse) was cannulated drop wise into the above lithium enolate at \(-78 \degree C\) and stirring was continued for 3 h at the same temperature. Then the reaction mixture was quenched with aq. Sat. NH\textsubscript{4}Cl (3 mL) at \(-78 \degree C\) and slowly warmed to RT. The layers were separated, aq. layer was back extracted into EtOAc (3x10 mL), combined organic layers were washed with brine, dried over Na\textsubscript{2}SO\textsubscript{4}, filtered, concentrated under reduced pressure. The residue obtained was purified over silica gel column (10% EtOAc/hexane) to furnish aldol adduct 3 (99.0 mg) in 92% yield as a colorless oil. \(R_f = 0.45\) (20% EtOAc/hexane). \([\alpha]_D^{24} = 10.9\ (c = 0.4, \text{CHCl}_3)\); IR (KBr): \(\nu_{\text{max}}\ 2931, 2297, 1713, 1515, 1459, 1251, 1217, 1096, 955, 838, 672\ \text{cm}^{-1};\ 1H \text{NMR} (300 MHz, \text{CDCl}_3): \delta 7.37 – 6.97\ (m, 8H, 7Ar\text{H}s, \text{-CH}=\text{CH}-\text{COOEt}), 6.77\ (dd, J = 16.3, 9.5 \text{ Hz}, 2H, Ar), 6.21 – 5.95\ (m, 2H, -\text{-CH}=\text{CH}-\text{COOEt}), 4.11 – 3.96\ (m, 1H, \text{CH}_3\text{C}_\text{H}(\text{OTBS})-), 2.06\ (tt, J = 6.0, 2.9 \text{ Hz}, 1H, -\text{CH}(\text{CH}_2\text{CH}_3)\text{CHO}), 1.70\ (ddq, J = 9.0, 7.1, 1.5 \text{ Hz}, 1H, \text{CH}_3\text{CH}_2\text{H}_\text{B}-), 1.51\ (ddq, J = 12.5, 7.5, 3.8 \text{ Hz}, 1H, \text{CH}_3\text{CH}_2\text{H}_\text{B}-), 1.19\ (d, J = 6.3 \text{ Hz}, 3H, \text{CH}_3\text{CH}(\text{OTBDPS})-), 0.89\ (t, J = 7.3, 3H, -\text{CH}_2\text{CH}_3), 0.85\ (s, 9H, -C(CH_3)_3), 0.04\ (s, 3H, -OSi(CH_3)), 0.04\ (s, 3H, -OSi(CH_3)).\ ^{13}C \text{NMR} (75 MHz, \text{CDCl}_3): \delta 205.59, 68.86, 61.05, 25.70, 22.27, 19.52, 17.93, 11.81, -5.03, -4.17; ESI-MS (m/z): 253 [M+Na]+; HRMS: calculated for C\textsubscript{12}H\textsubscript{27}O\textsubscript{2}Si [M+H]+: 231.1775 found 231.1777.
CH(CH_3)-, 5.69 (d, J = 15.4 Hz, 1H, EtOOC-CH=CH-), 4.57 (d, J = 18.6 Hz, 1H, ArCH_ACH_B),
4.42 – 4.22 (m, 3H, 2 MeOArCH_2'S, ArCH_ACH_B), 4.16 – 4.01 (m, 3H, CH_3CH_2OOC-), 3.82
(dd, J = 10.9, 8.1 Hz, 1H, -CHOBn), 3.69 (m, 4H, CH_2OAr), 3.52 – 3.42 (m, 1H, -CHOArOMe),
2.81 (dt, J = 17.5, 8.6 Hz, 1H, -COCH_AH_BCH(OH)-), 2.75 – 2.58 (m, 1H, -CHOCCH_3), 2.55 –
2.40 (m, 1H-COCH_AH_BCH(OH)-), 2.39 – 2.25 (m, 1H, =CH-CH(CH_3)-), 1.45-1.33 (m, 2H,
CH_3CH_2), 1.26 – 1.14 (m, 6H, 2 CH_3's), 1.14 – 1.05 (m, 4H, -CH(CH_2CH_3), CH_3), 0.93 (d, J =
6.8 Hz, 3H, CH_3CH(OTBS)-), 0.89 – 0.82 (m, 6H, 2 CH_3's), 0.79 (s, 9H, -C(CH_3)_3), 0.01 (m,
6H, -OSi(CH_3)_2); ^{13}C NMR ((75 MHz, CDCl_3): δ 125.8, 167.23, 158.98, 147.28, 144.91, 138.31,
130.96, 128.89, 128.26, 128.11, 127.41, 127.04, 119.65, 113.69, 81.95, 80.61, 73.69, 72.39,
69.94, 67.00, 60.20, 55.23, 49.65, 45.95, 41.53, 39.31, 30.93, 29.68, 25.75, 22.20, 17.37, 17.14,
14.29, 12.47, 11.03, 9.64, -5.23, -4.12; ESI-MS (m/z): 775 [M+Na]^+; HRMS: calculated for
C_{44}H_{68}O_{8}NaSi [M+Na]^+: 775.4581 found 775.4579.
1H NMR (300 MHz, CDCl₃)

- f1 (ppm) range: 8.0 to 0.0

13C NMR (75 MHz, CDCl₃)

- f1 (ppm) range: 210 to 0
1H NMR (300 MHz, CDCl$_3$)

13C NMR (75 MHz, CDCl$_3$)
Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2012

\[\text{1H NMR (300 MHz, CDCl\textsubscript{3})} \]

\[\text{13C NMR (75 MHz, CDCl\textsubscript{3})} \]
\[^1 \text{H NMR (300 MHz, CDCl}_3) \]

\[^{13} \text{C NMR (75 MHz, CDCl}_3) \]
1H NMR (300 MHz, CDCl$_3$)

13C NMR (75 MHz, CDCl$_3$)
1H NMR (300 MHz, CDCl₃)

13C NMR (75 MHz, CDCl₃)
1H NMR (300 MHz, CDCl₃)

13C NMR (75 MHz, CDCl₃)
1H NMR (300 MHz, CDCl$_3$)

13C NMR (75 MHz, CDCl$_3$)
Electronic Supplementary Material (ESI) for RSC Advances

This journal is © The Royal Society of Chemistry 2012

OTBDPS

1H NMR (300 MHz, CDCl$_3$)

OTBDPS

13C NMR (75 MHz, CDCl$_3$)
Electronic Supplementary Material (ESI) for RSC Advances

This journal is © The Royal Society of Chemistry 2012