Supporting information

One step thermal conversion of lignin to the gasoline range liquid products by using zeolites as additives

Haoxi Ben1,2 and Arthur J. Ragauskas *1,2

1 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.

2 Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA.

30332, USA.

*Correspondence should be addressed to Arthur J. Ragauskas

Email: Art.Ragauskas@chemistry.gatech.edu
GC-MS analysis of pyrolysis products

The GC-MS analysis of pyrolysis products was conducted by Agilent 5975C MSD and 7890A GC with a 7693 auto sampler. The Agilent HP-5MS, 19091S-433 column was used. The GC oven was programmed with the following temperature regime: hold at 50 °C for 5 min, ramp to 80 °C at 5 °C/min and hold at 80 °C for 5 min, then ramp to 200 °C at 2 °C/min and hold at 200 °C for 5 min.

![GC-MS spectrum](image)

Figure S1. GC-MS spectrum for the heavy oil produced by pyrolysis of pure SW kraft lignin with 1.0/1.0 (W_{additive}/W_{lignin}) of Y zeolite as additive at 600 °C for 10 min.

Table S1. Chemical composition of heavy oil produced by pyrolysis of pure SW kraft lignin with 1.0/1.0 (W_{additive}/W_{lignin}) of Y zeolite as additive at 600 °C for 10 min, detected by GC-MS.

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (%)</th>
<th>Chemical name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.30</td>
<td>1.65</td>
<td>3-Penten-2-one, 4-methyl-</td>
</tr>
<tr>
<td>11.67</td>
<td>9.25</td>
<td>Phenol</td>
</tr>
<tr>
<td>15.20</td>
<td>9.13</td>
<td>Phenol, 2-methyl-</td>
</tr>
<tr>
<td>16.55</td>
<td>14.31</td>
<td>Phenol, 3-methyl-</td>
</tr>
<tr>
<td>17.32</td>
<td>11.49</td>
<td>Phenol, 2-methoxy-</td>
</tr>
<tr>
<td>Retention Time</td>
<td>Area (%)</td>
<td>Compound</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>18.41</td>
<td>2.09</td>
<td>Phenol, 2,6-dimethyl-</td>
</tr>
<tr>
<td>21.35</td>
<td>5.18</td>
<td>Phenol, 2,4-dimethyl-</td>
</tr>
<tr>
<td>21.44</td>
<td>4.51</td>
<td>Phenol, 2,4-dimethyl-</td>
</tr>
<tr>
<td>22.83</td>
<td>1.82</td>
<td>Phenol, 3,5-dimethyl-</td>
</tr>
<tr>
<td>23.35</td>
<td>6.22</td>
<td>Naphthalene</td>
</tr>
<tr>
<td>24.34</td>
<td>1.57</td>
<td>Phenol, 2-methoxy-4-methyl-</td>
</tr>
<tr>
<td>24.47</td>
<td>2.21</td>
<td>Phenol, 3,4-dimethyl-</td>
</tr>
<tr>
<td>25.03</td>
<td>12.62</td>
<td>1,2-Benzenediol</td>
</tr>
<tr>
<td>29.22</td>
<td>3.53</td>
<td>1,2-Benzenediol, 3-methyl-</td>
</tr>
<tr>
<td>30.84</td>
<td>4.78</td>
<td>Naphthalene, 1-methyl-</td>
</tr>
<tr>
<td>31.24</td>
<td>5.60</td>
<td>1,2-Benzenediol, 4-methyl-</td>
</tr>
<tr>
<td>31.94</td>
<td>2.09</td>
<td>Naphthalene, 1-methyl-</td>
</tr>
<tr>
<td>39.02</td>
<td>1.93</td>
<td>Naphthalene, 1,4-dimethyl-</td>
</tr>
</tbody>
</table>

Figure S2. GC-MS spectrum for the heavy oil produced by pyrolysis of pure SW kraft lignin with 1.0/1.0 (W_{additive}/W_{lignin}) of Beta zeolite as additive at 600 °C for 10 min.
Table S2. Chemical composition of heavy oil produced by pyrolysis of pure SW kraft lignin with 1.0/1.0 (W_{additive}/W_{lignin}) of Beta zeolite as additive at 600 °C for 10 min, detected by GC-MS.

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (%)</th>
<th>Chemical name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.32</td>
<td>2.34</td>
<td>3-Penten-2-one, 4-methyl-</td>
</tr>
<tr>
<td>11.69</td>
<td>9.15</td>
<td>Phenol</td>
</tr>
<tr>
<td>15.23</td>
<td>9.96</td>
<td>Phenol, 2-methyl-</td>
</tr>
<tr>
<td>16.58</td>
<td>14.95</td>
<td>Phenol, 4-methyl-</td>
</tr>
<tr>
<td>17.34</td>
<td>9.96</td>
<td>Phenol, 2-methoxy-</td>
</tr>
<tr>
<td>21.38</td>
<td>5.41</td>
<td>Phenol, 2,4-dimethyl-</td>
</tr>
<tr>
<td>21.46</td>
<td>5.92</td>
<td>Phenol, 2,5-dimethyl-</td>
</tr>
<tr>
<td>22.85</td>
<td>2.12</td>
<td>Phenol, 3,5-dimethyl-</td>
</tr>
<tr>
<td>23.37</td>
<td>7.53</td>
<td>Azulene</td>
</tr>
<tr>
<td>25.04</td>
<td>11.82</td>
<td>1,2-Benzenediol</td>
</tr>
<tr>
<td>29.23</td>
<td>3.78</td>
<td>1,2-Benzenediol, 3-methyl-</td>
</tr>
<tr>
<td>30.85</td>
<td>7.14</td>
<td>Naphthalene, 2-methyl-</td>
</tr>
<tr>
<td>31.25</td>
<td>4.68</td>
<td>1,2-Benzenediol, 4-methyl-</td>
</tr>
<tr>
<td>31.95</td>
<td>3.19</td>
<td>Naphthalene, 2-methyl-</td>
</tr>
<tr>
<td>39.02</td>
<td>2.08</td>
<td>Naphthalene, 1,3-dimethyl-</td>
</tr>
</tbody>
</table>