Facile and rapid synthesis of highly crumpled graphene sheets as high-performance electrodes for supercapacitors

Jun Yan,a Ying Xiao,a Guoqing Ning,b Tong Weia and Zhuangjun Fan,*a

a Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China. E-mail: fanzhj666@163.com; Tel: +86 451 82569890

b State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
Table S1. Surface characterization of as-prepared CRG, FCRG and HCGSs.

<table>
<thead>
<tr>
<th>Item</th>
<th>CRG</th>
<th>FCRG</th>
<th>HCGSs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific surface area (m² g⁻¹)⁰</td>
<td>352.5</td>
<td>447.8</td>
<td>433.1</td>
</tr>
<tr>
<td>Total pore volume (cm³ g⁻¹)⁰</td>
<td>0.36</td>
<td>0.61</td>
<td>0.98</td>
</tr>
<tr>
<td>Average pore diameter (nm)⁰</td>
<td>4.7</td>
<td>6.6</td>
<td>11.2</td>
</tr>
</tbody>
</table>

⁰ Specific surface area was calculated by the BET method.

⁰ Total pore volume was calculated from adsorption branch isotherms by the BJH method.

⁰ Average pore diameter was calculated from adsorption branch isotherms by the BJH method (4V/S_{BET}).
Fig. S1. Typical atomic force microscopy image and height profile of a GO monolayer deposited on a mica and its selection analysis.
Fig. S2. SEM images of (a) CRG, (b, c) HCGSs and (d) FCRG.
Fig. S3. (a) Nitrogen adsorption/desorption isotherms and (b) pore-size distribution curves of the CRG, FCRG and HCGSs. Inset: the enlargement of region in the range of 10-50 nm.
Fig. S4. (a) CV curves of HCGSs at different scan rates. (b) Specific capacitance measured at different scan rates and (c) galvanostatic charge/discharge curves at different current densities for CRG, FCRG and HCGSs.