Supplementary Table 1 Environmental safety evaluation of ENMs after acute exposure

in C. elegans

ENMs (size)	Dose	Duration	Adverse effects	Ref
CeO ₂ -NPs (8.5	1-100 nM	L1-larvae	Decreased lifespan, increased intestinal lipofuscin	[1]
nm)		to adult	accumulation, increased oxidative damage.	
CeO_2 -NPs (15,		24-hr	Altered expression of hsp-16.1, hsp-16.2, gst-4,	[2]
30, 45 nm)			and cyp35a2, decreased egg number.	
CeO ₂ -NPs (15 and		24-hr	Increased expression of <i>cyp35a2</i> , and decrease in	[3]
45 nm)			fertility, and survival.	
ZnO-NPs (1.5	325-1625	4, 24,	Increased lethality and Pmtl-2::gfp expression, and	[4]
nm)	mg/L	72-hr	decreased brood size and movement.	
ZnO-NPs (20 nm)	0.4-8.1	24-hr,	Increased lethality, suppressed reproduction and	[5]
	mg/L	5-day	growth.	
ZnO-NPs (25 and			LC ₅₀ was 0.32 mg/L or 2 mg/L (25 nm or 100 nm)	[6]
100 nm)				
TiO ₂ -NPs (7 and		24-hr	Increased expression of <i>cyp35a2</i> , and decrease in	[3]
20 nm)			fertility, and survival.	
TiO ₂ -NPs (50 nm)	24-239.6	24-hr,	Increased lethality, suppressed reproduction and	[5]
	mg/L	5-day	growth.	
TiO ₂ -NPs (4, 10, 0.001-10 L1-larvae Decreased survival, growth, reproduction,		Decreased survival, growth, reproduction,	[7]	
60, 90 nm)	μg/L	to day-1	locomotion behavior, and metabolism, and	
	adun		increased intestinal autofluorescence and ROS	
			production.	
TiO ₂ -NPs (25 and			LC ₅₀ was 77 mg/L (25 nm)	[6]
100 nm)				
Al_2O_3 -NPs (60	10.2-407.8	24-hr,	Increased lethality, suppressed reproduction and	[5]
nm)	mg/L	5-day	growth.	
Al ₂ O ₃ -NPs (60	6.3-203.9	24-hr, L1	Increases in lethality, stress response, and	[8]
nm)	mg/L	larvae-adu	intestinal lipofuscin autofluorescence.	
		п.		
Al_2O_3 -NPs (60	0.1-50000	6 and	Decreased locomotion behavior.	[9]
nm)	µg/L	12-hr, L1-larvae		
		to adult		
Ag-NPs (14-20	0.05-0.5	24, 72-hr	Altered gene expression profile, and suppressed	[10]
nm)	mg/L		reproduction.	

CIT-Ag-NPs (7	0.5-50	24-hr	Growth inhibition.	[11]		
nm),	mg/L					
PVP-Ag-NPs (21						
nm),						
PVP-Ag-NPs (75						
nm)						
Ag-NPs (20 nm)	0.05-0.5	4, 24-hr	Increase in ROS formation, altered gene	[12]		
	mg/L		expression, and reduced reproduction.			
Ag-NPs (1 nm),	0.5-10	24, 48,	Increased lethality.	[13]		
PVP-coated	mg/L or	72-hr				
Ag-INFS (20 IIII)	0.6-3 mg/L					
Citrated coated	1-1000	24, 48-hr	Decreased survival and reproduction.	[14]		
Ag-NPs (50.6 nm)	mg/L					
CuO-NPs (<50	1-50	24-hr	Altered gene expression patterns.	[15]		
nm)	µg/mL					
DMSA-coated	0.001-100	24-hr,	Decreased survival, growth, reproduction,	[16]		
Fe_2O_3 -NPs (9 nm)	mg/L	L1-larvae to day-1 adult	locomotion behavior, and metabolism, and			
			increased intestinal autofluorescence and ROS			
			production.			
hydroxylated	1-100		Decreased survival ratio, shortened lifespan, and	[17]		
fullerene $(4.7 \text{ and } 40.1 \text{ nm})$	µg/mL		reduced reproduction rate and body size.			
40.1 mm)						
NaYF ₄ :Yb,Er	1-5 mg/mL	3, 24-hr	Reduced survival.	[18]		
MSA-capped	0.01-1 μM	3 days	Increased embryo mortality, defect in egg-laying,	[19]		
CdSe/ZnS			and reduced lifespan.			
Citrate-coated Au-NPs	5.9 mg/L	4 nm	Different expression of 797 genes.	[20]		

Supplementary Table 2 Environmental safety evaluation of ENMs after chronic

exposure in C. elegans

ENMs (size)	Dose	Duration	Adverse effects				
Silica-NPs (60 nm)	0.25-50 mg.mL	The full generation from day-1 adult	Reproductive senescence.	[11]			
Al_2O_3 -NPs (60	8.1-30.6	10-days	Increase of intestinal autofluorescence, and	[21]			
nm)	mg/L		formation of stress response and oxidative				
			damage.				
Al ₂ O ₃ -NPs (60	0.005-23.1	10 days	Decreased locomotion behavior, and	[22]			
nm)	mg/L		increased stress response and oxidative stress.				
DMSA coated	1-5000	L1-larvae to	Decreased survival, growth, reproduction,	[16]			
Fe_2O_3 -NPs (9 nm)	µg/L	day-8 adult	locomotion behavior, and metabolism, and				
1111)			increased intestinal autofluorescence and				
	ROS production.						
MPA-CdSe QDs	20 nM	16 days	Difficulty in egg laying, damaged egg left in	[23]			
(5-6 nm)			the vulva and egg without an intact egg shell,				
			and decreased growth, brood size and				
			lifespan.				

Supplementary Table 3 Comparative analysis of *C. elegans* based toxicities of TiO₂-NPs

with those in other *in vitro* and *in vivo* assay systems

Organism	Size	Toxicity array used	Dose	Duration	Adverse effects	Ref.
Human	25 nm	Cytotoxicity and gene	75	6 hr	Cell viability and induce	[24]
pulmonary		expression	mg/L		expression of	
epithelial,					stress-related genes	
cervical						
cancer,						
hepatocarcino						
ma, and						
monocytic						
leukemia cells						
Human skin	25 and	Lipid and protein	50	4 hr	Photocytotoxicity, cell	[25]
keratinocytes	100 nm	peroxidation	mg/L,		membrane damage	
Human	25 nm	Oxidative stress and	50	24, 48 and	Oxidative stress and	[26]
embryonic		apoptosis	mg/L	72 hr	apoptosis	
kidney cell						
Human	21 nm	Metabolic activation and cell	10	24, 48, 72	Decreased metabolic	[27]
hepatocarcino		death	mg/L	hr	activation, and increased	
ma, lung			-		cell death	
epithelial, and						
monocytic						
leukemia cells						
Human	7 and 10	Total glutathione,	10	4 hr	DNA damage	[28]
hepatoblasto	nm	DCFH-DA, DNA strand	mg/L			
ma cells		breaks	-			
Human	20 nm	Micronucleus, mitochondrial	5	24, 48, 72	Cytotoxic and genotoxic	[29]
keratinocytes		DNA damage, ROS	mg/L	hr		
cells						
Murine	25 nm	Morphology, LDH assay,	10	2, 24, 48 hr	Cellular toxicity and	[30]
fibroblast and		IL-6 and TNF-β assay, DNA	mg/L		inflammation	
pre-osteoblast		fragmented				
cells						
Murine	5 and 32	Cell viability, LDH assay,	5	24, 48, and	Cytotoxicity	[31]
pre-osteoblast	nm	apoptosis, mitochondrial	mg/L	72 hr		
s cells		membrane permeability,	-			
		gene expression				
Murine		Morphology, chromosome	16	24 hr	Apoptosis	[32]
microglia		condensation, cell cycle	mg/L			-
cells			-			
Human	3.2 nm	Live viability, LDH assay,	100	50 hr	Cytotoxicity and	[33]

dermal		mitochondrial activity, IL-8	mg/L		inflammatory response	
fibroblast and		expression				
lung epithelial						
cells						
Human	100 nm	Comet assay, DNA laddering	0.25	3 hr	Mitochondrial damage,	[34]
lymphocyte		assay	mM		genotoxic	
Rat adrenal	21 nm	Viability, ROS	10	6, 12, 24	Apoptosis	[35]
medulla			mg/L	and 48 hr		
pheochromoc						
ytoma						
Non-small	11-150	Cell viability, necrosis and	50	1 hr	Cytotoxicity	[36]
cell lung	nm	apoptosis, LDH assay	mg/L			
cancer cells						
Human	100 nm	Membrane permeability,	0.005	24 and 48	Apoptotic and necrotic	[37]
monoblastoid		DNA quantification	g/L	hr	modifications	
cells						
Human	25 nm	Lipid peroxidation, cell	10	4 hr	Perturbs the cytoskeleton	[38]
keratinocytes		proliferation	mg/L		architecture, and inhibit	
cells					cell growth	
Bottlenose	25 nm	Comet assay, cytotoxicity	50	4, 24,48 hr	Genotoxic	[39]
dolphin			mg/L			
leukocytes						
Human	25 and	ROS, cell toxicity	200	4 hr	Mitochondria disruption	[40]
keratinocytes	100 nm		mg/L			
cells						
Mouse	100 nm	ROS, SOD, LDH, GSH,	60	24 and 48	Cell morphology changed,	[41]
fibroblast		survival, cell morphology	mg/L	hr	apoptosis	
cells						
Mice	100 nm	Pathological examination,	500	30 day	Lesions on murine brain	[42]
		monoamine neurotransmitter	μg/			
		levels	mice			
Mice	33 nm	Comet assay, karyological	40	7 day	Genotoxicity	[43]
		assay	mg/kg			
Mice	8 and	Cells and total protein,	5	24 hr and	Inflammation	[44]
	10.4 nm	TNF- α and IL-6 expression	µg/mi	30 day		
			ce			
Apolipoprotei	12 and	Plaque progression in aorta,	0.5	4 weeks	Increase in plaque	[45]
n E knockout	21.6 nm	vasodilatory function, gene	mg/kg		progression in aorta	
(ApoE-/-)		expression levels				
mice						
Mice	25 nm	Cytoplasmic aconitase,	2.5	7 day	Induced toxicities	[46]
		L-lactate dehydrogenase A	mg/mi		evaluated at the protein	
		chain, carbonic anhydrase 1,	ce		level	
		pyruvate kinase isoform M2				

		and peroxiredoxin 6,				
		expression of heat shock				
		protein, moesin and				
		apolipoprotein A-1 precursor				
Mice	5-6 nm	Nephric inflammation, cell	2.5	90 day	Nephric injury	[47]
		necrosis and dysfunction.	mg/kg			
		expression of nucleic				
		factor-浼B, tumor necrosis				
		factor-α, macrophage				
		migration inhibitory factor,				
		interleukin-2, interleukin-4,				
		interleukin-6, interleukin-8,				
		interleukin-10, interleukin				
		18, interleukin-1 β ,				
		cross-reaction protein,				
		transforming growth				
		factor-蕌, interferon-紈 and				
		CYP1A1, and heat shock				
		protein 70				
Mice	6.9 nm	Histopathological and	5	14 day	Nephrotoxicity, oxidative	[48]
		biochemical analysis	mg/kg		stress	
		including ROS, lipid				
		peroxidation, antioxidant				
		enzyme activity, glutathione,				
		and ascorbic acid				
Mice	21 nm	Maternal lung inflammation,	42	8-18 day	Lung inflammation,	[49]
		gestational and litter	mg/m ³		offspring neurobehavioral	
		parameters, offspring			alterations	
		neurofunction, and fertility				
Mice	5 nm	Expressions of inflammatory	5-150	14 day	Inflammatory responses,	[50]
		cytokines, histopathological	mg/kg		and liver injury	
		changes, and hepatocytes				
		apoptosis				
Mice	5 nm	Organs and serum	5	14 day	Toxicity formed in liver	[51]
		biochemical parameters	mg/kg			
Mice	80-110	Histopathology, passive	324	24 and 48	Hhepatocellular necrosis	[52]
	nm	behavior, loss of appetite,	mg/kg	hr, 7 and 14	and apoptosis, hepatic	
		tremor, and lethargy		days	fibrosis, renal glomerulus	
					swelling and interstitial	
					pneumonia	
Mice	15, 50	Expression of LPS, IL-1 β ,	8mg/k	24 hr	Lung inflammation	[53]
	and 100	MCP-1, and KC	g			
	nm					
Mice	5 nm	Norepinephrine, dopamine,	5	60 day	Impaired spatial	[54]

		dihydroxyphenylacetic acid,	mg/kg		recognition memory	
		5-hydroxytryptamine,			ability	
		acetylcholine, glutamate, and				
		NO				
Rat	21 nm	LC50, microvascular	5	24 hr	Microvascular dysfunction	[55]
		oxidative stress, NO	µg/rat			
Rat	13. and	GSH, SOD, H ₂ O ₂ , TNF-α,	0.2	7 day	Oxidative damage,	[56]
	42 nm	and IL-1β	mg/kg		synovium hypotrophy and	
					lymphocytes and plasma	
					cells infiltration	
Rat	5 nm	LDH, 8-isoprostane	2	6 hr	Inflammatory response	[57]
			mg/m ³			
Rat	25 nm	Input/output (I/O) functions,	100	2 and 21	Neurotoxicity	[58]
		pairedpulse reaction (PPR),	mg/kg	days		
		field excitatory postsynaptic				
		potential, population spike				
		amplitude				
Larval	25-70	Hatch ability, survival,	0.1	5 day	Behavioral toxicity	[59]
zebrafish	nm	malformation, moving	mg/L			
		velocity and activity				
Zebrafish	30 nm	SOD, CAT, GSH,	50	7 day	Oxidative damage	[60]
		MDA, .OH	mg/L			
Trout	10-150	Hemolysis rate, NADH,	1.6	10 and 60	DNA damage,	[61]
erythrocyte	nm	comet assay	mg/L	min		
D. magna	21 nm	Survival	0.25	96 hr, 21	Mortality	[62]
			mM,	day		
D. magna	100 nm	Molting	0.73	24, 48, 72,	Molting inhibition	[63]
			mg/L	96 hr		
E. fetida	14-16	Expression of	0.1	24 hr	Altered antioxidant system	[64]
	nm	metallothionein and	mg/L			
		superoxide dismutase,				
		induction of apoptotic				
		activity, phagocytosis				
E. fetida	10-20	Antioxidant enzymes, DNA	1.0	7 day	Mitochondrial damages,	[65]
	nm	damage, cellulase activity,	g/kg		DNA damage	
		mitochondria damage	dry			
			soil			
Porcellio	15 nm	CAT and GST	0.5	3 days	Decreased antioxidant	[66]
scaber			µg/g		enzymes	
			food			
Lumbricus	100-300	Intestinal epithelium and	10	7 days	Apoptosis	[67]
terrestris	nm	chloragogenous	mg/kg			
			soil			
C. elegans	30 nm	lethality, growth,	0.05-5	L1-larvae	decreased survival,	[68]

		reproduction, loco	motion	$0\ \mu g/L$	to d	ay-1	growth,	reproduction,	
		behavior, ROS produc	tion		adult		locomotion	behavior, and	
							increased R	OS production	
C. elegans					24-hr		Increased e	xpression of	[3]
							<i>cyp35a2</i> , an	nd decrease in	
							fertility, an	d survival.	
C. elegans	50 nm	lethality, reproductio	n and	24-23	24-hr,		Increased le	ethality,	[5]
		growth	9.6 ^{5-day}		5-day	suppressed	reproduction		
				mg/L			and growth		
C. elegans	4, 10, 60,	survival, g	growth,	0.001-	L1-larva	ae	Decreased	survival,	[7]
	90 nm	reproduction, locomotion	10 to day-1	ay-1	growth, rep	production,			
	intestinal	intestinal autofluore	utofluorescence,	μg/L	L addit		locomotion	behavior, and	
		and ROS production.					metabolism	, and increased	
							intestinal a	utofluorescence	
							and ROS p	roduction.	
C. elegans	25 and	survival					LC ₅₀ was 7	7 mg/L (25	[76]
	100 nm						nm)		

References

- 1 H. Zhang, X. He, Z. Zhang, P. Zhang, Y. Liu, Y. Ma, Y. Kuang, Y. Zhao, Z. Chai, *Environ. Sci. Technol.*, 2011, **45**, 3725.
- 2 J. Roh, Y. Park, J. Choi, J. Environ. Toxicol., 2008, 23, 87.
- 3 J. Roh, Y. Park, K. Park, J. Choi, Environ. Toxicol. Pharmacol., 2010, 29, 167.
- 4 H. Ma, P. M. Bertsch, T. C. Glenn, N. J. Kabengi, P. L. Williams, *Environ. Toxicol. Chem.*, 2009, **28**, 1324.
- 5 H. Wang, R. L. Wick, B. Xing, Environ. Pollut., 2009, 157, 1171.
- 6 P. Khare, M. Sonane, R. Pandey, S. Ali, K. C. Gupta, A. Satish, *J. Biomed. Nanotechnol.*, 2011, 7, 116.
- 7 Y. -X. Li, W. Wang, Q. -L. Wu, Y. -P. Li, M. Tang, B. -P. Ye, D. -Y. Wang, *PLoS ONE*, 2012, 7, e44688.
- 8 S. Wu, J. -H. Lu, Q. Rui, S. -H. Yu, T. Cai, D. -Y. Wang, *Environ. Toxicol. Pharmacol.*, 2011, **31**, 179.
- 9 Y. -X. Li, S. -H. Yu, Q. -L. Wu, M. Tang, D. -Y. Wang, *Nanotoxicology*, 2012, doi: 10.3109/17435390.2012.689884.

- 10 J. Roh, S. J. Sim, J. Yi, K. Park, K. H. Chung, D. Ryu, J. Choi, *Environ. Sci. Technol.*, 2009, **43**, 3933.
- 11 J. N. Meyer, C. A. Lord, X. Y. Yang, E. A. Turner, A. R. Badireddy, S. M. Marinakos, A. Chilkoti, M. R. Wiesner, M. Auffan, *Aquat. Toxicol.*, 2010, **100**, 140.
- 12 D. Lim, J. Roh, H. Eom, J. Choi, J. Hyun, J. Choi, Environ. Toxicol. Chem., 2012, 31, 585.
- 13 L. Ellegaard-Jensen, K. A. Jensen, A. Johansen, Ecotoxicol. Environ. Safety, 2012, 80, 216.
- 14 S. W. Kim, S. H. Nam, Y. J. An, Ecotoxicol. Environ. Safety, 2012, 77, 64.
- 15 Y. Zhang, D. Chen, M. A. Smith, B. Zhang, X. Pan, PLoS ONE, 2012, 7, e31849.
- 16 Q. -L. Wu, Y. -P. Li, M. Tang, D. -Y. Wang, PLoS ONE, 2012, 7, e43729.
- 17 Y. J. Cha, J. Lee, S. S. Choi, Chemosphere, 2012, 87, 49.
- 18 J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, S. Xu, J. Mater. Chem., 2011, 21, 2632.
- P. L. Hsu, M. O'Callaghan, N. Al-Salim, M. R. H. Hurst, *Environ. Toxicol. Chem.*, 2012, 31, 2366.
- 20 O. V. Tsyusko, J. M. Unrine, D. Spurgeon, E. Blaslock, D. Stames, M. Tseng, G. Joice, P. M. Bertsch, *Environ. Sci. Technol.*, 2012, 46, 4115.
- 21 S. -H. Yu, Q. Rui, T. Cai, Q. -L. Wu, Y. -X. Li, D. -Y. Wang, *Environ. Toxicol. Pharmacol.*, 2011, **32**, 233.
- 22 Y. -X. Li, S. -H. Yu, Q. -L. Wu, M. Tang, Y. -P. Pu, D. -W. Wang, *J. Hazard. Mater.*, 2012, **219-220**, 221.
- 23 Y. Qu, W. Li, Y. Zhou, X. Liu, L. Zhang, Y. Li, A. Iida, Z. Tang, Y. Zhao, Z. Chai, C. Chen, *Nano Lett.*, 2011, **11**, 3174.
- 24 S.S. Mano, K. Kanehira, S. Sonezaki, A. Taniguchi, Int. J. Mol. Sci., 2012, 13, 3703.
- 25 J.J. Yin, J. Liu, M. Ehrenshaft, J.E. Roberts, P.P. Fu, R.P. Mason, B. Zhao, *Toxicol. Appl. Pharmacol.*, 2012, **263**, 81.
- 26 R. Meena, M. Rani, R. Pal, P. Rajamani, Appl. Biochem. Biotechnol., 2012, 167, 791.
- 27 A. Lankoff, W.J. Sandberg, A. Wegierek-Ciuk, H. Lisowska, M. Refsnes, B. Sartowska,
 P.E. Schwarze, S. Meczynska-Wielgosz, M. Wojewodzka, M. Kruszewski, *Toxicol. Lett.*,
 2012, 208, 197.
- 28 A. Kermanizadeh, B.K. Gaiser, G.R. Hutchison, V. Stone, Part. Fibre Toxicol., 2012, 9, 28.

29 A. Jaeger, D.G. Weiss, L. Jonas, R. Kriehuber, Toxicology, 2012, 296, 27.

- 30 M.C. Bernier, K. El Kirat, M. Besse, S. Morandat, M. Vayssade, *Colloids Surf. B Biointerfaces*, 2012, **90**, 68.
- 31 Y. Zhang, W. Yu, X. Jiang, K. Lv, S. Sun, F. Zhang, J. Mater. Sci. Mater. Med., 2011, 22, 1933.
- 32 X. Li, S. Xu, Z. Zhang, H.J. Schluesener, Chin. Sci. Bull., 2009, 54, 3830.
- 33 C.M. Sayes, R. Wahi, P.A. Kurian, Y. Liu, J.L. West, K.D. Ausman, D.B. Warheit, V.L. Colvin, *Toxicol. Sci.*, 2006, **92**, 174.
- 34 M. Ghosh, M. Bandyopadhyay, A. Mukherjee, *Chemosphere*, 2010, **81**, 1253.
- 35 S. Liu, L. Xu, T. Zhang, G. Ren, Z. Yang, Toxicology, 2010, 267, 172.
- 36 Y.S. Lee, S. Yoon, H.J. Yoon, K. Lee, H.K. Yoon, J.H. Lee, C.S. Song, *Toxicol. Lett.*, 2009, 189, 191.
- 37 C.I. Vamanu, M.R. Cimpan, P.J. Høl, S. Sørnes, S.A. Lie, N.R. Gjerdet, *Toxicol. in Vitro*, 2008, 22, 1689.
- 38 J. Chan, T. Ying, Y.F. Guang, L.X. Lin, T. Kai, Z.Y. Fang, Y.X. Ting, L.F. Xing, Y.Y. Ji, Biol. Trace Elem. Res., 2011, 144, 183.
- 39 M. Bernardeschi, P. Guidi, V. Scarcelli, G. Frenzilli, M. Nigro, Anal. Bioanal. Chem., 2010, 396, 619.
- 40 C. Jin, Y. Tang, F.G. Yang, X.L. Li, S. Xu, X.Y. Fan, Y.Y. Huang, Y.J. Yang, *Biol. Trace Elem. Res.*, 2011, **141**, 3.
- 41 C. Jin, B. Zhu, X. Wang, Q. Lu, Chem. Res. Toxicol., 2008, 21, 1871.
- 42 L. Zhang, R. Bai, B. Li, C. Ge, J. Du, Y. Liu, L. Le Guyader, Y. Zhao, Y. Wu, S. He, Y. Ma, C. Chen, *Toxicol. Lett.*, 2011, 207, 73.
- 43 L.P. Sycheva, V.S. Zhurkov, V.V. Iurchenko, N.O. Daugel-Dauge, M.A. Kovalenko, E.K. Krivtsova, A.D. Durnev, *Mutat. Res.*, 2011, 726, 8.
- 44 M. Roursgaard, K.A. Jensen, S.S. Poulsen, N.E. Jensen, L.K. Poulsen, M. Hammer, G.D. Nielsen, S.T. Larsen, *Sci. World J.*, 2011, **11**, 801.
- 45 L. Mikkelsen, M. Sheykhzade, K.A. Jensen, A.T. Saber, N.R. Jacobsen, U. Vogel, H. Wallin, S. Loft, P. Moller, *Part. Fibre Toxicol.*, 2011, 8, 32.
- 46 Y.-M. Jeon, S.-K. Park, W.-J. Kim, J.-H. Ham, M.-Y. Lee, Mol. Cell. Toxicol., 2011, 7, 283.

- 47 S. Gui, Z. Zhang, L. Zheng, Y. Cui, X. Liu, N. Li, X. Sang, Q. Sun, G. Gao, Z. Cheng, J. Cheng, L. Wang, M. Tang, F. Hong, *J. Hazard. Mater.*, 2011, **195**, 365.
- 48 J. Zhao, N. Li, S. Wang, X. Zhao, J. Wang, J. Yan, J. Ruan, H. Wang, F. Hong, *J. Exp. Nanosci.*, 2010, **5**, 447.
- 49 K.S. Hougaard, P. Jackson, K.A. Jensen, J.J. Sloth, K. Loschner, E.H. Larsen, R.K. Birkedal, A. Vibenholt, A.M. Boisen, H. Wallin, U. Vogel, *Part. Fibre Toxicol.*, 2010, 7, 16.
- 50 L. Ma, J. Zhao, J. Wang, J. Liu, Y. Duan, H. Liu, N. Li, J. Yan, J. Ruan, H. Wang, F. Hong, *Nanoscale Res. Lett.*, 2009, **4**, 1275.
- 51 H. Liu, L. Ma, J. Zhao, J. Liu, J. Yan, J. Ruan, F. Hong, *Biol. Trace Elem. Res.*, 2009, **129**, 170.
- 52 J. Chen, X. Dong, J. Zhao, G. Tang, J. Appl. Toxicol., 2009, 29, 330.
- 53 K. Inoue, H. Takano, M. Ohnuki, R. Yanagisawa, M. Sakurai, A. Shimada, K. Mizushima, T. Yoshikawa, *Int. J. Immunopathol. Pharmacol.*, 2008, 21, 197.
- 54 R. Hu, X. Gong, Y. Duan, N. Li, Y. Che, Y. Cui, M. Zhou, C. Liu, H. Wang, F. Hong, *Biomaterials*, 2010, **31**, 8043.
- 55 T.R. Nurkiewicz, D.W. Porter, A.F. Hubbs, S. Stone, B.T. Chen, D.G. Frazer, M.A. Boegehold, V, *Toxicol. Sci.*, 2009, **110**, 191.
- 56 J.X. Wang, Y.-B. Fang, Y. Gao, Q.H. Hu, T.C. Wang, *Biomaterials*, 2009, **30**, 4590.
- 57 A. Noël, K. Maghni, Y. Cloutier, C. Dion, K.J. Wilkinson, S. Hallé, R. Tardif, G. Truchon, *Toxicol. Lett.*, 2012, **214**, 109.
- 58 X. Gao, S. Yin, M. Tang, J. Chen, Z. Yang, W. Zhang, L. Chen, B. Yang, Z. Li, Y. Zha, D. Ruan, M. Wang, *Biol. Trace Elem. Res.*, 2011, **143**, 1616.
- 59 T. Chena, C.-Y. Lin, M.C. Tseng, Marine Pollut. Bull, 2011, 63, 303.
- 60 D. Xiong, T. Fang, L. Yu, X. Sima, W. Zhu, Sci. Total Environ., 2011, 409, 1444.
- 61 D. Sekar, M.L. Falcioni, G. Barucca, G. Falcioni, *Environ Toxicol*, 2011, doi: 10.1002/tox.20778
- 62 S.H. Bang, T.H. Le, S.K. Lee, P. Kim, J.S. Kim, J. Min, *Environ. Health Toxicol.*, 2011, 26, e2011002.
- 63 D. Andre, L. Duester, C. Prasse, F. Seitz, R. Rosenfeld, C. Schilde, G.E. Schaumann, R.

Schulz, *PLoS ONE*, 2011, **6**, e20112.

- 64 E. Bigorgne, L. Foucaud, E. Lapied, J. Labille, C. Botta, C. Sirguey, J. Falla, J. Rose, E.J. Joner, F. Rodius, J. Nahmani, *Environ. Pollut.*, 2011, **159**, 2698.
- 65 C.W. Hu, M. Li, Y.B. Cui, D.S. Li, J. Chen, L.Y. Yang, Soil Biol. Biochem., 2010, 42, 586.
- 66 A. Jemec, D. Drobne, M. Remskar, K. Sepcić, T. Tisler, *Environ. Toxicol. Chem.*, 2008, 27, 1904.
- E. Lapied, J.Y. Nahmani, E. Moudilou, P. Chaurand, J. Labille, J. Rose, J. Exbrayat, D.H.
 Oughton, E.J. Joner, *Environ. Int.*, 2011, 37, 1105.
- 68 Q. –L. Wu, A. Nouara, Y. –P. Li, M. Zhang, W. Wang, M. Tang, B. –P. Ye, J. –D. Ding, D. –Y. Wang, *Chemosphere*, 2013, **90**, 1123.