Supporting Information

Environment-friendly Synthesis and Performance of a Novel Hyperbranched Epoxy Resin with Silicone Skeleton

Daohong Zhang1*, Enbin Liang1, Tingcheng Li1, Sufang Chen2, Junheng Zhang1, Xinjian Cheng1, Jiliang Zhou1, Aiqing Zhang1

1Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-central University for Nationalities, Wuhan, Hubei Province, 430074, China;

2Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, Hubei 430073, China.

*Corresponding author, Prof. Dr. D.Zhang, Tel:+86-27-67842752, Fax: +86-27-67842752, email: zhangdh27@163.com.
Contents of supporting information

Figure S1. Relationship between recycled times of the halloysite-supported platinum catalyst and FT-IR spectra of the product.

Figure S2. Relationship between conversion of Si-H bond and recycled times of the halloysite-supported platinum catalyst.

Figure S3. OM micrographs of 9wt%HERSS/91wt%DGEBA on the surface of glass slide with curing time: (a) 0 min, (b) 5min, (c) 10min, (d) 30min and (e) 60min.

Figure S4. DSC curves of HERSS/DGEBA composites and DGEBA.

Figure S5. TGA curves of HERSS/DGEBA composites and DGEBA.

Table S1. TGA data of HERSS/DGEBA composites and DGEBA.

S1. FT-IR data of TMDS, AGE, TDPGE, PTAS, AHRSS and HERSS.

S2. \(^1\)H NMR data of TDPGE, PTAS, AHRSS and HERSS.

S3. \(^{13}\)C NMR data of TDPGE, PTAS, AHRSS and HERSS.
Figure S1. Relationship between recycled times of the halloysite-supported platinum catalyst and FT-IR spectra of the product.

Figure S2. Relationship between conversion of Si-H bond and recycled times of the halloysite-supported platinum catalyst.
Figure S3. OM micrographs of 9wt%HERSS/91wt%DGEBA on the surface of glass slide with curing time: (a) 0 min, (b) 5min, (c) 10min, (d) 30min and (e) 60min.

Figure S4. DSC curves of HERSS/DGEBA composites and DGEBA.

Figure S5. TGA curves of HERSS/DGEBA composites and DGEBA.
Table S1. TGA data of HERSS/DGEBA composites and DGEBA.

<table>
<thead>
<tr>
<th>Typical data</th>
<th>Ti (Temp.5% weight loss) (°C)</th>
<th>Temp.10% weight loss (°C)</th>
<th>Temp. Max. Degrad. Rate (°C)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGEBA-DETA-AN</td>
<td>337.5</td>
<td>352.1</td>
<td>378.4</td>
<td></td>
</tr>
<tr>
<td>3wt% HERSS/DGEBA-DETA-AN</td>
<td>339.4</td>
<td>354.0</td>
<td>379.6</td>
<td></td>
</tr>
<tr>
<td>6wt% HERSS/DGEBA-DETA-AN</td>
<td>340.5</td>
<td>355.1</td>
<td>375.6</td>
<td></td>
</tr>
<tr>
<td>9wt% HERSS/DGEBA-DETA-AN</td>
<td>340.2</td>
<td>354.6</td>
<td>376.5</td>
<td></td>
</tr>
<tr>
<td>12wt% HERSS/DGEBA-DETA-AN</td>
<td>339.6</td>
<td>353.8</td>
<td>375.2</td>
<td></td>
</tr>
<tr>
<td>15wt% HERSS/DGEBA-DETA-AN</td>
<td>340.1</td>
<td>356.0</td>
<td>373.6</td>
<td></td>
</tr>
<tr>
<td>DGEBA-MNA</td>
<td>99.1</td>
<td>306.7</td>
<td>368.6</td>
<td></td>
</tr>
<tr>
<td>HERSS-MNA</td>
<td>380.0</td>
<td>401.0</td>
<td>468.5</td>
<td></td>
</tr>
</tbody>
</table>

S1. FT-IR data of TMDS, AGE, TDPGE, PTAS, AHRSS and HERSS.

Characteristic bonds of TMDS in FT-IR (KCl, cm⁻¹): 2955 (s, CH₃), 2121 (s, Si-H), 1254 (s, Si-C), 1052 (s, Si-O-Si). AGE (KCl, cm⁻¹): 3059 (s, =C-H), 1646 (s, CH=CH₂), 1250 (s, C-O-C), 912 (s, epoxy group). TDPGE (KCl, cm⁻¹): 2121 (s, Si-H), 1254 (s, C-O-C), 912 (s, epoxy group). PTAS (KCl, cm⁻¹): 3060 (s, =C-H), 1629 (s, CH=CH₂). AHRSS (KCl, cm⁻¹): 3060 (s, =C-H), 1629 (s, CH=CH₂). HERSS (KCl, cm⁻¹): 1250 (s, C-O-C), 905 (s, epoxy group).

S2. ¹H NMR data of TDPGE, PTAS, AHRSS and HERSS.

PTAS (¹H NMR, CDCl₃, ppm): δ 1.89-1.91 (c, 2H), 4.91-4.98 (a, 2H), 5.78-5.89
(b, 1H), 7.39-7.56 (d, 5H). TDPGE (1H NMR, CDCl$_3$, ppm): δ 4.63-4.75 (n, 1H),
3.63-3.77 (j, 1H), 3.41-3.45 (i, 2H), 3.35-3.41 (j, 1H), 3.05-3.14 (k, 1H), 2.73-2.83
(m, 1H), 2.53-2.63 (m, 1H), 1.51-1.65 (h, 2H), 0.48-0.59 (g, 2H), 0.04-0.25 (e, f,
12H). AHRSS (1H NMR, CDCl$_3$, ppm): δ 7.22-7.62 (d, 5H), 5.66-5.93 (b, 1H),
4.68-5.05 (a, 2H), 1.74-2.00 (c, 2H), 1.31-1.57 (p, 2H), 0.81-1.09 (r, 2H), 0.43-0.81 (t,
2H). HERSS (1H NMR, CDCl$_3$, ppm): δ 7.23-7.57 (d, 5H), 3.65-3.80 (j, 1H),
3.43-3.58 (i, 2H), 3.32-3.43 (j, 1H), 3.08-3.21 (k, 1H), 2.73-2.84 (m, 1H), 2.53-2.64
(m, 1H), 1.54-1.73 (h, 2H), 1.27-1.48 (p, 2H), 0.82-0.95 (r, 2H), 0.55-0.71 (t, 2H),
0.46-0.55 (g, 2H).

S3. 13C NMR data of TDPGE, PTAS, AHRSS and HERSS.

PTAS (100 MHz 13C NMR, CDCl$_3$, ppm): δ 134.03-134.19 (d, C), 133.06-133.23
(e, C), 132.60-132.89 (b, C), 128.08-128.40 (g, C), 126.36-126.95 (f, C),
112.91-113.52 (a, C), 18.30-18.68 (c, C), 76.8-77.5 (CDCl$_3$, C). TDPGE (100 MHz
13C NMR, CDCl$_3$, ppm): δ 74.42-74.71 (i, C), 71.71-71.94 (k, C), 50.94-51.26 (m, C),
44.16-44.55 (p, C), 23.65-23.99 (j, C), 13.25-15.32 (i, C), 0.21-1.25 (h, C), 76.8-77.5
(CDCl$_3$, C). AHRSS (100 MHz 13C NMR, CDCl$_3$, ppm): δ 134.74-135.19 (d, C),
134.21-134.68 (e, C), 133.75-134.15 (b, C), 128.79-129.75 (g, C), 127.52-128.40 (f,
C), 112.86-115.62 (a, C), 19.53-21.03 (c, C), 17.56-18.28 (r, C), 16.08-17.42 (q, C),
13.43-14.61 (t, C), 0.2-1.79 (h, C), 76.8-77.5 (CDCl$_3$, C). HERSS (100 MHz 13C
NMR, CDCl$_3$, ppm): δ 134.59-134.76 (d, C), 134.19-134.45 (e, C), 128.73-129.02 (g,
C), 127.70-128.10 (f, C), 74.08-74.80 (i, C), 71.22-72.01 (k, C), 50.71-51.31 (m, C),
76.8-77.5 (CDCl$_3$, C).
44.05-44.77 (p, C), 23.66-24.24 (j, C), 18.03-18.34 (r, C), 17.10-17.56 (q, C),
14.35-14.82 (t, i, C), 0.35-0.90 (h, C), 76.8-77.5 (CDCl₃, C).