Supplementary Information

Regioselective synthesis of densely functionalized, enantiopure, sugar-pyrazole hybrids as potential scaffolds for drug discovery

Mohammad Saquib,^{*a*} Irfan Husain,^{*a*} Ruchir Kant,^{*b*} Sanjeev Meena,^{*c*} H. M. Gauniyal,^{*d*} Sudhir Sinha,^{*c*} P. R. Maulik,^{*b*} Arun K. Shaw^{**a*}

^a Medicinal and Process Chemistry Division, ^bMolecular and Structural Biology Division, ^cDrug Target Discovery and Development, ^dSophisticated Analytical Instruments Facility, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226001, India

Title Page	1
Experimental section - Chemistry	2
General remarks	2
Procedure for synthesis of compound 3 and spectral data	
of compounds 3-15	3 - 10
Procedure for sequential one pot synthesis of compound 4	11
NMR spectra of compounds 3-15	12 - 43
Crystal structure of compound 13	44 - 45
Anti-cancer activity	46

Experimental Section - Chemistry

General Remarks: Organic solvents were dried by standard methods. Analytical TLC was performed using 2.5×5 cm plates coated with a 0.25 mm thickness of silica gel (60 F-254), visualization was accomplished with CeSO₄ or 10% H₂SO₄/EtOH and subsequent charring over hot plate. Column chromatography was performed using silica gel (60-120), (100-200) and (230-400). All the products were characterized by ¹H, ¹³C, DEPT pulse sequence, two-dimensional homonuclear COSY (Correlation Spectroscopy), Heteronuclear Single Quantum Correlation (HSQC), IR, MS (FAB), MS (ESI), HRMS (EI) and HRMS (DART). All NMR spectra were recorded with spectrometers at 300, 400 MHz (¹H) and 50, 75, MHz (¹³C). Experiments were recorded in CDCl₃, CDCl₃+CCl₄ mixture at 25 °C. Chemical shifts are given on the δ scale. For ¹³C NMR reference CDCl₃ appeared at 77.10 ppm or 77.40 ppm unless otherwise stated. Optical rotations were determined using a 1 dm cell in chloroform as solvent at 25 °C unless otherwise stated; concentrations mentioned are in g/100 mL.

Compound 3: To a solution of hex-2-enopyranoside 1a (269 mg, 0.6 mmol) in dry DCM (20 mL) was added Dess-Martin Periodinane (407 mg, 0.96 mmol) at -5 °C. Subsequently the reaction was allowed to warm to 5 °C and stirred for 3 h till all the starting material was converted into the oxidized product (TLC). The reaction was quenched by addition of excess of cold water. The organic layer was separated and the aqueous layer was extracted with DCM (4 \times 4mL). The combined organic layers were dried over sodium sulphate and evaporated in vacuo at low temperature till all but 1-2 mL solvent remained. The crude product (2a) was now dissolved in 20 mL of 1,2-dichloroethane (DCE) and after addition of requisite amount of phenylhydrazine hydrochloride (347 mg, 2.4 mmol) the reaction was stirred at 90 °C for 4.5 h. On completion of the reaction (TLC) excess of water was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with DCM (5 x 4 mL). The combined organic layers were dried over sodium sulphate and evaporated *in vacuo* to obtain the crude product. The crude product was chromatographed (hexane/ethyl acetate, 9:1) to yield the pure compound 3 as a yellow solid. Yield - (158 mg, 49% over two steps); solid; mp 124-126 °C; $R_f = 0.60$ (hexane/ethyl acetate, 7:3); eluent for column chromatography (hexane/ethyl acetate, 9:1); $[\alpha]_D^{26} = +62.56$ (c 0.100, CHCl₃); IR (KBR, cm⁻¹): 3444, 2928, 2366, 1732, 1688, 1216; ¹H NMR (CDCl₃, 400 MHz): δ 8.17 (d, 2H, J = 8.8 Hz), 7.52 (d, 2H, J = 6.6 Hz), 7.38-7.34 (m, 3H), 7.24-7.22 (m, 2H), 5.98 (s, 1H), 4.80 (dd, 1H, J = 2.4, J = 6.5), 4.67 (dd, 1H, J = 1.42.4, J = 12.0), 4.49 (dd, 1H, J = 6.6, J = 12.0), 4.03-3.97 (m, 1H), 3.83-3.77 (m, 1H), 1.79-1.72 (m, 1H), 1.64-1.58 (m, 2H), 1.19 (s, 9H), 0.94 (d, 6H, J = 6.6); ¹³C NMR (CDCl₃, 75MHz): δ 188.8 (qC), 178.1 (qC), 154.0 (qC), 148.3 (qC), 140.6 (qC), 138.2 (qC), 133.6 (qC), 131.3 (CH), 129.5 (CH), 129.3 (CH), 125.6 (CH), 123.5 (CH), 113.8 (qC), 93.5 (CH), 73.1 (CH), 67.8 (CH₂), 62.7 (CH₂), 38.8 (qC), 38.3 (CH₂), 27.2 (CH₃), 25.1 (CH), 22.7 (CH₃), 22.5 (CH₃); HRMS (DART): Calcd for $C_{24}H_{22}N_3O_6[M-C_5H_{11}O]^+$ 448.1508; found 448.1478.

Compound 4-15 were prepared using a similar procedure as reported for compound 3.

Compound **4.** Yield - (170 mg, 50% over two steps); solid; mp 90-92 °C; $R_f = 0.6$ (hexane/ethyl acetate, 7:3); eluent for column chromatography (hexane/ethyl acetate, 9:1); $[\alpha]_D^{25} = +11.08$ (*c* 0.200, CHCl₃); IR (KBr, cm⁻¹): 2927, 2368, 1730, 1691; ¹H NMR (CDCl₃, 300 MHz): δ 8.19 (d, 2H, *J* = 8.8 Hz), 7.52 (d, 2H, *J* = 8.7 Hz), 7.15 (d, 2H, *J* = 8.9 Hz), 6.86 (d, 2H, *J* = 9.0 Hz), 5.98 (s, 1H), 4.79 (dd, 1H, *J* = 2.3 Hz, *J* = 6.4 Hz), 4.67 (dd, 1H, *J* = 2.4 Hz, *J* = 12.0 Hz), 4.49 (dd, 1H, *J* = 6.6 Hz, *J* = 11.8 Hz), 4.04-3.96 (m, 1H), 3.81-3.76 (m, 1H), 1.78-1.69 (m, 1H), 1.67-1.57 (m, 2H), 1.22 (s, 9H), 0.94 (d, 6H, *J* = 6.5 Hz); ¹³C NMR (CDCl₃, 75MHz): δ 188.8 (qC), 178.1 (qC), 160.1 (qC), 153.8 (qC), 148.3 (qC), 140.5 (qC), 133.7 (qC), 131.3 (CH), 130.1 (qC), 126.9 (CH), 123.5 (CH), 114.7 (CH), 113.5 (qC), 93.5 (CH), 73.0 (CH), 67.8 (CH₂), 62.8 (CH₂), 55.6 (CH₃), 38.8 (qC), 38.3 (CH₂), 27.2 (3 × CH₃), 25.1 (CH), 22.7 (CH₃), 22.5 (CH₃); HRMS (DART): Calcd for C₂₅H₂₄N₃O₇[M-C₅H₁₁O]⁺ 478.1614; found 478.1603.

Compound 5. Yield - (135 mg, 39% over two steps); glassy solid; $R_f = 0.38$ (hexane/ethyl acetate, 4:1); eluent for column chromatography (hexane/ethyl acetate, 24:1); $[\alpha]_D^{29} = +19.67$ (*c* 0.21, CHCl₃); IR (KBr, cm⁻¹): 3021, 2348, 1785, 1597; ¹H NMR (CDCl₃, 300 MHz): δ 8.19 (d, 2H, *J* = 8.8 Hz), 7.53 (d, 2H, *J* = 8.8 Hz), 7.23-7.12 (m, 4H), 5.98 (s, 1H), 4.80 (dd, 1H, *J* = 2.4, *J* = 6.5), 4.67 (dd, 1H, *J* = 2.5, *J* = 12.0), 4.49 (dd, 1H, *J* = 6.6, *J* = 11.9), 4.04-3.96 (m, 1H), 3.84-3.76 (m, 1H), 2.96-2.87 (m, 1H), 1.78-1.69 (m, 1H), 1.67-1.60 (m, 2H), 1.24-1.20 (m, 15H),

0.94 (d, 6H, J = 6.5); ¹³C NMR (CDCl₃, 75MHz): δ 188.6 (qC), 178.2 (qC), 153.8 (qC), 150.5 (qC), 148.3 (qC), 140.5 (qC), 135.9 (qC), 133.7 (qC), 131.3 (CH), 127.5 (CH), 125.4 (CH), 123.5 (CH), 113.7 (qC), 93.5 (CH), 73.0 (CH), 67.8 (CH₂), 62.8 (CH₂) 38.8 (qC), 38.3 (CH₂), 33.3 (CH), 27.2 (CH₃), 25.1 (CH), 23.8 (CH₃), 22.7 (CH₃), 22.5 (CH₃); HRMS (DART): Calcd for C₂₇H₂₈N₃O₆ [M-C₅H₁₁O]⁺ 490.1978; found 490.1960.

Compound 6. Yield - (130mg, 42% over two steps); solid; mp 133-135 °C; $R_f = 0.52$ (hexane/ethyl acetate, 7:3); eluent for column chromatography (hexane/ethyl acetate, 22:3); $[\alpha]_D^{19} = +92.21$ (*c* 0.72, CHCl₃); IR (KBr, cm⁻¹): 3422, 3022, 2360, 1652, 1522; ¹H NMR (CDCl₃, 300 MHz): δ 7.62 (d, 2H, J = 8.52 Hz), 7.45 (d, 2H, J = 8.52 Hz), 7.38-7.33 (m, 3H), 7.23-7.20 (m, 2H), 5.98 (s, 1H), 4.79 (dd, 1H, J = 2.4, J = 6.5), 4.67 (dd, 1H, J = 2.5, J = 12.0), 4.49 (dd, 1H, J = 6.6, J = 12.0), 4.04-3.96 (m, 1H), 3.83-3.75 (m, 1H), 1.77-1.67 (m, 1H), 1.65-1.57 (m, 2H), 1.19 (s, 9H), 0.93 (d, 6H, J = 6.5); ¹³C NMR (CDCl₃, 75MHz): δ 188.8 (qC), 178.1 (qC), 153.9 (qC), 141.0 (qC), 138.2 (qC), 132.0 (CH), 131.7 (qC), 130.9 (CH), 129.5 (CH), 129.3 (CH), 125.6 (CH), 118.1 (qC), 113.6 (qC), 93.5 (CH), 73.0 (CH), 67.8 (CH₂), 62.7 (CH₂), 38.8 (qC), 38.3 (CH₂), 27.2 (3 x CH₃), 25.1 (CH), 22.7 (CH₃), 22.5 (CH₃); HRMS (DART): Calcd for C₂₅H₂₂N₃O₄ [M-C₅H₁₁O]⁺ 428.1610; found 428.1598.

Compound 7. Yield – (90mg, 28% over two steps); solid; 80-82 °C; $R_f = 0.52$ (hexane/ethyl acetate, 7:3); eluent for column chromatography (hexane/ethyl acetate, 9:1); $[\alpha]_D^{19} = +107.03$ (*c* 0.55, CHCl₃); IR (KBr, cm⁻¹): 3426, 3020, 2357, 1693, 1647; ¹H NMR (CDCl₃, 300 MHz): δ 7.64 (d, 2H, *J* = 8.3 Hz), 7.44 (d, 2H, *J* = 8.3 Hz), 7.24-7.20 (m, 2H), 7.09-7.04 (m, 2H), 5.96 (s, 1H), 4.78 (dd, 1H, *J* = 2.2 Hz, *J* = 6.3 Hz), 4.66 (dd, 1H, *J* = 2.4 Hz , *J* = 12.0 Hz), 4.48 (dd, 1H, *J* = 6.5 Hz, *J* = 12.0 Hz), 4.03-3.96 (m, 1H), 3.83-3.76 (m, 1H), 1.78-1.67 (m, 1H), 1.65-1.59 (m, 2H), 1.19 (s, 9H), 0.94 (d, 6H, *J* = 6.5); ¹³C NMR (CDCl₃, 75MHz): δ 188.7 (qC) 178.1 (qC), 164.2 (qC), 160.8 (qC) 154.0 (qC), 141.0 (qC), 134.37 (qC), 134.33 (qC), 132.1 (CH), 131.5 (qC), 130.9 (CH),127.5 (CH), 127.4 (CH), 118.0 (qC), 116.8 (CH), 116.4 (CH), 113.8 (qC), 113.7 (qC), 93.4 (CH), 73.0 (CH), 67.8 (CH₂), 62.7 (CH₂), 38.8 (qC), 38.3 (CH₂), 27.2 (CH₃), 25.1 (CH), 22.7 (CH₃), 22.5 (CH₃); HRMS (DART): Calcd for C₂₅H₂₁FN₃O₄ [M-C₅H₁₁O]⁺ 446.1516; found 446.1505.

Compound 8. Yield - (134 mg, 44% over two steps); solid; 119-121 °C; $R_f = 0.47$ (hexane/ethyl acetate, 17:3); eluent for column chromatography (hexane/ethyl acetate, 23:2); $[\alpha]_D^{30} = +116.24$ (*c* 0.1, CHCl₃); IR (KBr, cm⁻¹): 3021, 2360, 1725, 1511; ¹H NMR (CDCl₃, 300 MHz): δ 7.36 - 7.30 (m, 5H), 7.24 - 7.22 (m, 2H), 7.02 (t, 2H, J = 8.6 Hz), 5.97 (s, 1H), 4.79 (dd, 1H, J = 2.3 Hz, J = 6.5 Hz), 4.68 (dd, 1H, J = 2.4 Hz, J = 11.9 Hz), 4.49 (dd, 1H, J = 6.6 Hz, J = 11.9 Hz), 4.04-3.96 (m, 1H), 3.83-3.75 (m, 1H), 1.80-1.69 (m, 1H), 1.67-1.55 (m, 2H), 1.20, (s, 9H), 0.93 (d, 6H, J = 6.2); ¹³C NMR (CDCl₃, 75MHz): δ 188.7 (qC), 178.2 (qC), 165.1 (qC), 161.8 (qC), 153.7 (qC), 142.4 (qC), 138.6 (qC), 132.4 (CH), 132.3 (CH), 129.3 (CH), 128.8 (CH), 125.6 (CH), 123.3 (qC), 123.2 (qC) 115.8 (CH), 115.5 (CH), 113.1 (qC), 93.6 (CH), 73.1 (CH), 67.7 (CH₂), 62.9 (CH₂), 38.8 (qC), 38.3 (CH), 27.2 (CH₃), 25.1 (CH), 22.7, (CH₃), 22.5 (CH₃); HRMS (DART): Calcd for C₂₄H₂₂F₁N₂O₄ [M-C₅H₁₁O]⁺ 421.1563; found 421.1548.

Compound 9. Yield - (93mg, 31% over two steps); glassy solid; Oil; $R_f = 0.62$ (hexane/ethyl acetate, 4:1); eluent for column chromatography (hexane/ethyl acetate, 22:3); $[\alpha]_D^{26} = +10.29$ (*c* 0.38, CHCl₃); IR (KBr, cm⁻¹): 3457, 3019, 2372, 1721, 1604; ¹H NMR (CDCl₃, 300 MHz): δ 7.74 (d, 2H, *J* = 8.3 Hz), 7.43 (d, 2H, *J* = 8.0 Hz), 5.88 (s, 1H), 4.65 (dd, 1H, *J* = 2.2 Hz, *J* = 6.6 Hz), 4.54 (dd, 1H, *J* = 2.3, *J* = 12.0), 4.37 (dd, 1H, *J* = 6.8, *J* = 11.9), 3.99-3.92 (m, 1H), 3.84-3.74 (m, 1H), 1.76-1.69 (m, 1H), 1.64-1.59 (m, 2H), 1.47 (s, 9H), 1.17 (s, 9H), 0.94 (d, 6H, *J* = 6.5), ¹³C NMR (CDCl₃, 75MHz): δ 188.7 (qC), 178.1 (qC), 150.8 (qC), 140.7 (qC), 136.0 (qC), 132.0 (CH), 130.6 (CH), 118.1 (qC), 113.6 (qC), 93.6 (CH), 72.7 (CH), 67.6 (CH₂), 63.8 (qC), 62.7 (CH₂), 38.8 (qC), 38.3 (CH₂), 31.2 (CH₃), 27.2 (CH₃), 25.2 (CH), 22.8 (CH₃), 22.5 (CH₃); HRMS (DART): Calcd for C₂₃H₂₆N₃O₄ [M-C₅H₁₁O]⁺ 408.1923; found 408.1908.

Compound 10. Yield - (127 mg, 46% over two steps); glassy solid; $R_f = 0.40$ (hexane/ethyl acetate, 7:3); eluent for column chromatography (hexane/ethyl acetate, 93:7); $[\alpha]_D^{27} = +10.45$ (*c* 0.56, CHCl₃); IR (KBr, cm⁻¹): 3441, 3021, 2375, 1696, 1601; ¹H NMR (CDCl₃, 300 MHz): δ 8.19 (d, 2H, *J* = 8.8 Hz), 7.52 (d, 2H, *J* = 8.8 Hz), 7.41-7.36 (m, 3H), 7.25-7.22 (m, 2H), 6.02 (s, 1H), 4.85 (dd, 1H, *J* = 3.7 Hz, *J* = 7.8 Hz), 4.12-4.04 (m, 1H), 3.90-3.82 (m, 1H), 3.10 (dd, 1H, *J* = 3.8 Hz, *J* = 17.0 Hz), 2.86 (dd, 1H, *J* = 7.9, *J* = 17.0), 1.82-1.70 (m, 1H), 1.68-1.58 (m, 1H)1.25 (s, 9H), 0.97-0.95 (m, 6H); ¹³C NMR (CDCl₃, 75MHz): δ 188.1 (qC), 153.7 (qC), 148.4 (qC), 141.0 (qC), 138.0 (qC), 133.2 (qC), 131.4 (CH), 129.6 (CH), 129.5 (CH), 125.6 (CH), 123.6 (CH), 116.9 (qC), 113.2 (qC), 94.0 (CH), 70.2 (CH), 68.3 (CH₂), 38.3 (CH₂), 25.0 (CH),

22.7 (CH₃), 22.4 (CH₃), 19.0 (CH₂); HRMS (DART): Calcd for $C_{20}H_{13}N_4O_4$ [M-C₅H₁₁O]⁺ 373.0936; found 373.0956.

Compound 11. Yield - (106 mg, 38% over two steps); glassy solid; $R_f = 0.54$ (hexane/ethyl acetate, 3:2); eluent for column chromatography (hexane/ethyl acetate, 21:4); $[\alpha]_D = [\alpha]_D^{28} = +27.34$ (*c* 0.18, CHCl₃); IR (KBr, cm⁻¹): 3376, 2363, 1640; ¹H NMR (CDCl₃, 300 MHz): δ 7.62 (d, 2H, *J* = 8.2 Hz), 7.45 (d, 2H, *J* = 8.2 Hz), 7.39-7.37 (m, 3H), 7.24-7.21 (m, 2H), 5.89 (s, 1H), 4.78 (dd, 1H, *J* = 2.3, *J* = 6.4 Hz), 4.69 (dd, 1H, *J* = 2.4 Hz, *J* = 12.0 Hz), 4.49 (dd, 1H, *J* = 6.6 Hz, *J* = 11.9 Hz), 3.67 (s, 3H), 1.20 (s, 9H); ¹³C NMR (CDCl₃, 75MHz): δ 188.5 (qC), 178.1 (qC), 153.7 (qC), 141.0 (qC), 138.2 (qC), 132.1 (CH), 131.7 (qC), 130.9 (CH), 129.5 (CH), 129.3 (CH), 125.6 (CH), 118.0 (qC), 113.7 (qC), 113.6 (qC), 94.5 (CH), 73.0 (CH), 62.6 (CH₂), 56.3 (CH₃), 38.8 (qC), 27.5 (CH₃); HRMS (DART): Calcd for C₂₅H₂₂N₃O₄ [M-CH₃O]⁺ 428.1610; found 428.1595.

Compound 12. Yield – (118mg, 40% over two steps); solid; mp 91-93 °C; $R_f = 0.56$ (hexane/ethyl acetate, 7:3); eluent for column chromatography (hexane/ethyl acetate, 9:1); $[\alpha]_D^{30} = +45.99$ (*c* 0.48, CHCl₃); IR (KBr, cm⁻¹): 3441, 2364, 1728, 1691, 1567; ¹H NMR (CDCl₃, 300 MHz): δ 7.62 (d, 2H, J = 8.3 Hz), 7.44 (d, 2H, J = 8.3 Hz), 7.38-7.35 (m, 3H), 7.24-7.20 (m, 2H), 6.10 (s, 1H), 4.85 (dd, 1H, J = 2.3 Hz, J = 6.6 Hz), 4.69 (dd, 1H, J = 2.4 Hz , J = 12.0 Hz), 4.45

(dd, 1H, J = 6.8 Hz, J = 11.9 Hz), 4.26 (pent, 1H, J = 6.2 Hz), 1.36 (d, 6H, J = 6.2 Hz), 1.19 (s, 9H); ¹³C NMR (CDCl₃, 75MHz): δ 188.9 (qC), 178.2 (qC), 154.1 (qC), 141.0 (qC), 138.2 (qC), 132.0 (CH), 131.8 (qC), 130.9 (CH), 129.5 (CH), 129.2 (CH), 125.7 (CH), 117.0 (qC), 113.6 (qC), 91.8 (CH), 73.0 (CH), 71.1 (CH), 62.9 (CH₂), 38.8 (qC), 27.5 (3 × CH₃), 23.3 (CH), 21.7 (2 × CH₃); HRMS (DART): Calcd for C₂₅H₂₂N₃O₄ [M-C₃H₇O]⁺ 428.1610; found 428.1609.

Compound 13. Yield - (115mg, 41% over two steps); solid; mp 199-201 °C; $R_f = 0.43$ (hexane/ethyl acetate, 7:3); eluent for column chromatography (hexane/ethyl acetate, 87:13); $[\alpha]_D^{27} = +49.15$ (*c* 0.84, CHCl₃); IR (KBr, cm⁻¹): 3020, 2360, 1732, 1664; ¹H NMR (CDCl₃, 300 MHz): δ 8.18 (d, 2H, *J* = 8.8 Hz), 7.53 (d, 2H, *J* = 8.8 Hz), 7.39-7.37 (m, 3H), 7.24-7.21 (m, 2H), 6.13 (s, 1H), 4.86 (dd, 1H, *J* = 2.7 Hz, *J* = 5.3 Hz), 4.63 (dd, 1H, *J* = 2.8 Hz, *J* = 12.0 Hz), 4.55 (dd, 1H, *J* = 5.5 Hz, *J* = 11.9 Hz), 4.26 (pent, 1H, *J* = 6.2 Hz), 2.06 (s, 3H), 0.94 (d, 6H, *J* = 6.2 Hz); ¹³C NMR (CDCl₃, 75MHz): δ 188.8 (qC), 170.7 (qC), 154.1 (qC), 148.3 (qC), 140.7 (qC), 138.1 (qC), 133.5 (qC), 131.4 (CH), 129.5 (CH), 129.3 (CH), 125.7 (CH), 123.5 (CH), 113.9 (qC), 92.3 (CH), 72.6 (CH), 71.7 (CH), 62.4 (CH₂), 23.2 (CH₃), 22.0 (CH₃), 20.8 (CH₃); HRMS (DART): Calc for C₂₁H₁₆N₃O₆ [M-C₃H₇O]⁺ 406.1039; found 406.1030.

Compound 14. Yield - (153, 45% in 2 steps); glassy solid; $R_f = 0.53$ (hexane/ethyl acetate, 7:3); eluent for column chromatography (hexane/ethyl acetate, 22 :3); $[\alpha]_D^{24} = +29.25$ (*c* 0.22, CHCl₃); IR (neat, cm⁻¹): 3021, 2359, 1690, 1522; ¹H NMR (CDCl₃, 300 MHz): δ 8.19 (dd, 2H, *J* = 1.8 Hz, *J* = 7.0 Hz), 7.54 (dd, 2H, *J* = 1.9 Hz, *J* = 7.0 Hz), 7.40-7.36 (m, 3H), 7.25-7.22 (m, 2H), 6.02 (s, 1H, H-2), 4.81 (dd, 1H, *J* = 5.2 Hz, *J* = 2.9 Hz), 4.64 (dd, 1H, *J* = 12.0 Hz, *J* = 2.9 Hz), 4.57 (dd, 1H, *J* = 11.9 Hz, *J* = 5.3 Hz), 3.99-3.91 (m, 1H), 3.84-3.76 (m, 1H), 2.08 (s, 3H), 1.75-1.68 (m, 2H), 1.25 (s, 14H), 0.87-0.82 (m, 3H). ¹³C NMR (CDCl₃, 75MHz): δ 188.7 (qC), 170.7 (qC), 153.9 (qC), 148.4 (qC), 140.7 (qC), 138.2 (qC), 133.5 (qC), 131.4 (CH), 129.6 (CH), 129.4 (CH), 125.6 (CH), 123.5 (CH), 113.9 (qC), 93.8 (CH), 72.7 (CH), 69.7 (CH₂), 62.4 (CH₂), 31.9 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 26.3 (CH₂), 22.7 (CH₂), 20.9 (CH₃), 14.1 (CH₃). HRMS (EI) : Calc for C₂₉H₃₃N₃O₅ [M- C₂H₄O₂]⁺ 503.2056; found 503.2040. **Compound 15.**

Yield - (98mg, 30% over two steps); Oil; $R_f = 0.60$ (hexane/ethyl acetate, 4:1); eluent for column chromatography (hexane/ethyl acetate, 97:3); $[\alpha]_D^{26} = +32.60$ (*c* 0.14, CHCl₃); IR (neat, cm⁻¹): 3499, 1726, 1700, 1599; ¹H NMR (CDCl₃, 300 MHz): δ 7.52 - 7.49 (m, 3H), 7.41(d, 2H, *J* = 7.9 Hz), 5.89 (s, 1H), 4.75 - 4.67 (m, 3H), 4.54 (dd, 1H, *J* = 6.3 Hz, *J* = 11.8 Hz), 4.00 - 3.92 (m, 1H), 3.79 - 3.71 (m, 1H), 2.96 - 2.83 (m, 2H), 1.76 - 1.67 (m, 1H), 1.62 - 1.55 (m, 4H), 1.20 (s, 21 H), 0.92 (d, 6H), 0.86 (t, 3H); ¹³C NMR (CDCl₃, 75MHz): δ 189.5 (qC), 178.2 (qC) 153.3 (qC), 146.9 (qC), 138.4 (qC), 129.46 (CH), 129.41 (CH),125.9 (CH), 112.9 (qC), 93.8 (CH), 73.0 (CH), 67.6 (CH₂), 62.9 (CH₂), 38.8 (qC), 38.3 (CH₂), 31.9 (CH₂), 29.39 (CH₂), 29.34 (CH₂), 29.2 (CH₂), 29.0 (CH₂), 28.5 (CH₂), 27.2 (CH₃), 25.5 (CH), 22.79 (CH₃), 22.71 (CH), 22.5 (CH₃), 14.3 (CH₃); HRMS (ESI): Calcd for C₃₂H₄₈N₂NaO₅ [M+ Na]⁺ 563.3460; found 563.3490.

Procedure for sequential one pot synthesis of compound 4

To a solution of hex-2-enopyranoside **1a** (269 mg, 0.6 mmol) in dry DCE (20 mL) was added Dess-Martin Periodinane (407 mg, 0.96 mmol) at -5 °C. Subsequently the reaction was allowed to warm to 5 °C and stirred for 3 h till all the starting material was converted into the oxidized product (TLC). To the reaction mixture was now added 4-methoxy phenylhydrazine hydrochloride (417 mg, 2.4 mmol) and the reaction was stirred at 90 °C for 2 h. On completion of the reaction (TLC) excess of water was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with DCM (5 x 4 mL). The combined organic layers were dried over sodium sulphate and evaporated *in vacuo* to obtain the crude product. The crude product was chromatographed (hexane/ethyl acetate, 9:1) to yield the pure compound **4** as a yellow solid (177 mg, 52% over two steps).

Sugar pyrazole hybrid molecules **10**, **11** and **13** were prepared in a sequential one pot fashion using a similar procedure as reported for compound **4**.

¹H NMR spectrum of compound **3** and its expansion

¹³C and Dept 135 NMR spectra of compound **3**

¹H-¹H COSY and ¹H-¹³C HMBC spectra of compound **3** ₁₄

Key NOESY correlations in compound **3**

NOESY spectrum of compound 3

¹H-¹³C HMBC spectra of compound **3**

Key HMBC correlations in compound **3**

¹H-¹³C HMBC spectra of compound **3**

17

¹H NMR spectrum of compound **4** and its expansion 18

¹³C and Dept 135 NMR spectra of compound **4**

¹H NMR spectrum of compound **5** and its expansion

¹H NMR spectrum of compound **6** and its expansion

¹³C and DEPT 135 NMR spectra of compound **6**

 $^1\mathrm{H}\,\mathrm{NMR}$ spectrum of compound 7 and its expansion

 $^{13}\mathrm{C}$ and DEPT 135 NMR spectra of compound 7

 $^1\mathrm{H}\,\mathrm{NMR}$ spectrum of compound 8 and its expansion

¹³C and DEPT 135 NMR spectra of compound 8

¹H NMR spectrum of compound **9** and its expansion

¹³C and DEPT 135 NMR spectra of compound 9

¹H NMR spectrum of compound **10** and its expansion

¹³C and DEPT 135 NMR spectra of compound **10**

¹H NMR spectrum of compound **11** and its expansion 32

¹³C and DEPT 135 NMR spectra of compound **11**

¹H NMR spectrum of compound **12** and its expansion

¹³C and DEPT 135 NMR spectra of compound **12**

¹H NMR spectrum of compound **13** and its expansion

¹³C and DEPT 135 NMR spectra of compound **13**

¹H NMR spectrum of compound **14** and its expansion

¹³C and DEPT 135 NMR spectra of compound **14**

¹H NMR spectrum of compound **15** and its expansion

¹³C and DEPT 135 NMR spectra of compound **15**

¹H NMR spectra of MBH adduct **1a** and crude product mixture of its oxidized derivative **2a** (above) 42

¹H NMR spectra of MBH adduct **1h** and crude product mixture ₄₃ of its oxidized derivative **2h** (above)

Single crystal X-ray crystallographic study of compound 13

Fig. 1S. ORTEP diagram showing the molecular structure of compound 13 ($C_{24}H_{23}N_3O_7$) at 30% probability

Fig. 2S The partial crystal-packing diagram of compound **13** showing intermolecular C-H...O and C-H...N and π ... π interactions.

The conformation of compound 13 was studied by single crystal X-ray diffraction analysis. The compound 13 crystallizes in $P2_12_12_1$ space group with one molecule in asymmetric unit. The ORTEP diagram (Figure1S) shows the molecular structure of 13 with atomic numbering scheme. The molecule consists of Four rings (A, B, C, D) to which two isopropoxy and acetoxymethyl substituents are attached at the C8 and C4 positions respectively, one carbonyl group substituted at C5 and one nitro functional group is attached at C22 position in the molecule. Rings B, C, D are almost planar. There are two short intramolecular C-H.^{..}O (C20-O4 =3.111Å, H20...O4 = 2.875Å, <C20-H20-O4 = 95.38°) and C-H.^{..}N interactions (C14-N1 = 2.824 Å, H14...N1 = 2.548Å, <C14-H14-N1 = 96.88°) in the crystal structure. The geometric parameters suggest the repulsive nature of these interactions²¹ which could be the possible reason of the mutual orientation of aromatic rings C and D adopted in the conformation of the molecule (the torsion angle of C20-C19-C12-C6 is 59.79° and of C14-C13-N2-N1 is 31.88° while the dihedral angle between the least-squares mean planes of ring C and ring D is 57.17(6)°). Ring A has a half chair conformation with atom O3 is puckered out of the plane; deviations of atom O3 is 0.602(3) Å from the mean plane through atoms C4, C5, C6, C7 and C8. Further, the X-ray analysis also shows the presence of edge-to-face intermolecular π ... π interaction (centroid separation X1...X2 = 4.24Å, symmetry code: 1+x, y, z). In addition the crystal packing (Fig. 2S) reveals the presence of intermolecular C-H...O and C-H...N interactions which provides stabilization to the molecular structure. Few important intermolecular interactions are shown in figure 2S and their hydrogen bonding parameters are summarized in table 1.

D—H […] A	D—H	H A	D A	D—H […] A
C9-H9 O7 ⁱ	1.00	2.68	3.32	120
C14–H14 […] O5 ⁱⁱ	0.95	2.54	3.45	161
C24-H24 O4 ⁱⁱ	0.95	2.41	3.33	164
$C1^{ii}$ -H1C ⁱⁱ ···O7 ⁱ	0.98	2.65	3.43	136
C10 ⁱⁱ –H10A ^{ii…} N1	0.98	2.72	3.63	155
C9 ⁱⁱⁱ -H9 ⁱⁱⁱ O7	1.00	2.68	3.32	122
C1 ⁱⁱⁱ -H1C ⁱⁱⁱ O7 ⁱⁱ	0.95	2.41	3.33	164

Table S1. Hydrogen bond Geometry (Å, °).

Symmetry codes: (i) 1/2-x, 2-y, -1/2+z (ii) 1+ x, y, z (iii) 1/2-x, 2-y, 1/2+z

The crystal data of compound **13**: $C_{24}H_{23}N_3O_7$, M = 465.45, Orthorhombic, $P 2_1 2_1 2_1$, a = 5.9798(9)Å, b =14.147(2)Å, c = 25.909(4)Å, V = 2191.8(6)Å³, Z = 4, $D_c = 1.411$ g cm⁻³, μ (Mo-K α) = 0.11 mm⁻¹, F(000)= 976, rectangular block, Dark brown, size = $0.22 \times 0.16 \times 0.12 \text{ mm}$, 11937 reflections measured (R_{int} = 0.0473), 4075 unique, wR₂ = 0.1010 for all data, conventional R1 = 0.0464 for 3287 Fo > 4 σ (Fo) and 0.0624 for all 4075 data, S = 1.004 for all data and 310 parameters. Unit cell determinations and intensity data collection were performed on Bruker SMART APEX CCD area-detector instruments. Structure solutions by direct methods and refinements by full-matrix least-squares methods on F^2 . Programs: SMART (Bruker, 2001), SMART 32 (Bruker), SAINT (Bruker, 2001), SHELXTL-NT [Bruker AXS Inc.: Madison, Wisconsin, USA 1997]. CCDC (deposit No: CCDC 894734) contains the supplementary crystallographic data. These data obtained free charge can be of from www.ccdc.cam.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, U. K; Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk.

21 G. R. Desiraju and T. Steiner, in *The Weak Hydrogen Bond in Structural Chemistry and Biology*, Oxford University Press, New York, 1999.

Determination of anti-cancer efficacy using human cancer cell lines

The human cancer cell lines- KB (oral squamous cell carcinoma), C33A (cervical carcinoma), MCF7 (breast adenocarcinoma), A549 (lung carcinoma) and mouse embryo fibroblast (NIH3T3) were obtained from American Type Culture Collection (ATCC, USA) and grown in recommended media in a 5% CO₂ humidified atmosphere at 37 $^{\circ}$ C. The colorimetric sulforhodamine B assay¹⁹ was used for the determination of cytotoxicity. In brief, 10⁴ cells were added to each well of 96-well culture plates and incubated overnight to allow for cell attachment. Stock solutions of test compounds and standard drug (doxorubicin) were prepared in DMSO and their serial dilutions were tested against the selected cell types. Untreated cells served as control. After 48 h of exposure, cells were fixed with ice-cold TCA (50%, w/v), stained with SRB (0.4%, w/v; made in 1% acetic acid), washed and air dried. Bound dye was dissolved in Tris base (10 mM) and plates were read at 540 nm absorbance on a plate reader (Polarstar Galaxy, BMG, Germany). The cytotoxic effects of compounds were calculated as % inhibition in cell growth as per the formula: [100-(Absorbance of compound treated cells/ Absorbance of untreated cells)] x 100. The half maximal inhibitory concentrations (IC₅₀) were calculated using Graph Prism software. A compound showing IC₅₀ value of <20 μ M was considered as 'active'.

19 P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bodesch, S. Kenney, M. R. Boyd, *J. Natl. Cancer Inst.*, 1990, **82**, 1107-1112.