Supporting Materials

Reduction of Mn$^{4+}$ to Mn$^{2+}$ in CaAl$_{12}$O$_{19}$ by co-doping charge compensators to obtain tunable photoluminescence

Jing Lu, Yuexiao Pan, Jiaguo Wang, Xi’an Chen, Shaoming Huang, Guokui Liu

aNanomaterials and Chemistry Key Laboratory, Faculty of Chemistry and Materials Engineering, Wenzhou University, Zhejiang Province, Wenzhou 325027, P. R. China

bChemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439

Figure S1. XRD patterns of (a) CaAl$_{12}$O$_{19}$:0.5%Mn and (b) CaAl$_{12}$O$_{19}$:0.5%Mn,3%Bi$^{3+}$ sintered at 1500 °C for 3 h in air. XRD data were collected with an X-ray diffractometer (D8 Advance, Bruker, Germany) with graphite monochromatized Cu Kα radiation (λ=0.15406 nm). Identification of phases was made using standard JCPDS files.
Figure S2. Emission spectra of CaAl$_{12}$O$_{19}$:Mn$^{4+}$ with different doping concentration at (a) 0.5, (b) 0.01, (c) 0.005, (d) 0.001, (e) 0.0001 mol% of Al$^{3+}$. The emission spectra were measured on a computer-controlled Triax 320 fluorescence spectrofluorimeter (Jobin-Yvon Inc., Longjumeau, France) with 150 W xenon lamp as the excitation source.
Figure S3. Excitation spectra of CAO:0.001%Mn$^{4+}$ monitored at (a) 655 nm and (b) 687 nm. The excitation spectra were measured on a computer-controlled Triax 320 fluorescence spectrofluorimeter (Jobin-Yvon Inc., Longjumeau, France).
Figure S4. Emission spectrum of CaAl$_{12}$O$_{19}$:0.5%Mn,3%Sm$^{3+}$ sintered at 1500 °C for 3 h in air. Measurement was performed on fluorescence spectrophotometer (Fluoro Max-4 Horiba Jobin Yvon Holland) at room temperature.

The emission spectrum of CaAl$_{12}$O$_{19}$:0.5%Mn,3%Sm$^{3+}$ is composed of emission bands from Sm$^{3+}$ at 561 nm and 594 nm, Mn$^{2+}$ at 517 nm, and Mn$^{4+}$ at 655 nm.
Figure S5. Emission spectrum of CaAl$_{12}$O$_{19}$:0.5%Mn$_2$,3%Nd$^{3+}$ sintered at 1500 °C for 3 h in air. Measurement was performed on fluorescence spectrophotometer (Fluoro Max-4 Horiba Jobin Yvon Holland) at room temperature. The emission spectrum of CaAl$_{12}$O$_{19}$:0.5%Mn$_2$,3%Nd$^{3+}$ is composed of green (from Mn$^{2+}$) at 517 nm and red (from Mn$^{4+}$) emissions at 655 nm.
Figure S6. Emission spectrum of CaAl$_{12}$O$_{19}$:0.5%Mn,3%Tm$^{3+}$ sintered at 1500 °C for 3 h in air. Measurement was performed on fluorescence spectrophotometer (Fluoro Max-4 Horiba Jobin Yvon Holland) at room temperature.

The emission spectrum of CaAl$_{12}$O$_{19}$:0.5%Mn,3%Tm$^{3+}$ is composed of blue emission (from Tm$^{3+}$) at 454 nm, green emission (from Mn$^{2+}$) at 517 nm, and red emission (from Mn$^{4+}$) at 655 nm.
Figure S7. Emission spectra ($\lambda_{ex}= 395$ nm) of the phosphor (a) CaAl$_{12}$O$_{19}$:3%Dy$^{3+}$ and (b) CaAl$_{12}$O$_{19}$:0.5%Mn$^{4+}$,3%Dy$^{3+}$. Inset: CIE chromaticity diagrams of emission spectra of (a) CaAl$_{12}$O$_{19}$:3%Dy$^{3+}$ and (b) CaAl$_{12}$O$_{19}$:0.5%Mn$^{4+}$,3% Dy$^{3+}$.

The emission spectra of CAO:3% Dy$^{3+}$ shows two characteristic emission bands of Dy$^{3+}$, a blue band of magnetic dipole transition ($^4F_{9/2}$ - $^6H_{15/2}$) and a yellow band of electric dipole transition ($^4F_{9/2}$ - $^6H_{11/2}$) as shown in Fig. 7a. In this phosphor, the electric dipole and magnetic dipole transitions have almost equal intensities because that Dy$^{3+}$ at the Ca$^{2+}$ site has a high-symmetry in the 12-fold coordinated cuboctahedron lattice structure. Both green emission of Mn$^{2+}$ and red emission of Mn$^{4+}$ are observed in the PL spectrum of CAO:Mn co-doped with 3% Dy$^{3+}$. The CIE chromaticity coordinates of CAO:3%Dy$^{3+}$ and CAO:0.5%Mn, 3%Dy$^{3+}$ are depicted by the inset in Fig. 7. While the CIE of both phosphors fill into the white region, but the co-doped phosphor has a stronger red component, therefore, is more attractive for creating warm white light.