Supporting Information

A Microporous Titanosilicate for Selective Killing of HeLa Cancer Cells

Stanislav Ferdov,^{*a} Evelina Shikova,^b Zina Ivanova,^b Louiza T. Dimowa,^c Rositsa P. Nikolova,^c Zhi Lin^d and Boris L. Shivachev^c

^aDepartment of Physics, University of Minho, 4800-058 Guimarães, Portugal.
^bInstitute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria.
^cInstitute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria.

^dCICECO, University of Aveiro, 3810-193 Aveiro, Portugal.

sferdov@fisica.uminho.pt).

Scanning electron microscopy and energy-dispersive X-ray spectroscopy *(SEM/EDS)*. The SEM images and chemical analyses of Zn-ETS-4 and Zn-STS were realized with NanoSEM - FEI Nova 200 (FEG/SEM) - EDAX - Pegasus X4M (EDS/EBSD) and the ones of CPT with Zeiss LS 25. Data of the chemically analyzed ion exchanged crystals are shown on Table S1. ETS-4 crystallizes as prismatic 20 μ m particles and as 80 μ m single crystals mixed with GTS-1 (Figure S1)¹⁻³. STS was prepared in its typical morphology of small 15 μ k hexagon-like crystals (Figure S1)⁴.

The natural CPT appeared as shapeless mass and prismatic single crystals with maximum length of 15 μ k (FigureS1).

Zn-ETS-4		Zn-STS		Zn-CPT		
Atom	Refine	EDS	Refine	EDS	Refine	EDS
	ment	ratio	ment	ratio	ment	ratio
Si	12	12.11	3	3.24	30	29.62
Ti	5	4.77	1	0.91	-	-
Al	-	-	-	-	6	6.32
K	-	0.04	1.16	1.55	0.4	0.41
Na	-	-	-	-	0.2	0.19
Zn	3.12	5.21	0.42	0.55	2.21	2.19
Ca	-	-	-		0.4	0.39
Mg	-	-	-	-	0.2	0.2

 Table S1. Chemical composition of the Zn-exchanged solids.

Figure S1. SEM images of Zn-exchanged ETS-4 (a, b), STS (c) and CPT (d).

Thermogravimetry (TG) analysis. The TG curves were collected with a Shimadzu TG-50 (Zn-ETS-4 and Zn-STS; heated in air at the rate of 5 °C min⁻¹) and Stanton Redcroft (Zn-CPT heated in argon at the rate of 5 °C min⁻¹) analyzers (**Figure S2**).

Figure S2. TG curves of Zn-exchanged molecular sieves.

Powder X-ray diffraction. The powder XRD analyses were performed on a Bruker D8 Discover (Zn-ETS-4 and Zn-STS) and Bruker D8 Advance (Zn-CPT) diffractometers. For the structural analysis Zn-STS the pattern was collected in $\theta/2\theta$ scan regime, using CuK α radiation, λ =1.54060 Å, step 0.02°, time per step 20 s, 2 θ range 9–100°. The data for the Zn-CPT were collected in $\theta/2\theta$ scan regime, using CuK α radiation, step 0.02°, time per step 10 s, 2 θ range 8–100°. The Rietveld refinement wascarried out by TOPAS-3 software package⁵ applying the fundamental parameters approach (FPA)⁶. In the profile-fitting process of the FPA⁶, the intensity profile is derived from the X-ray emission profile, instrument parameters and specimen dependent parameters. The set of diffractometer-dependent variables were used with a full axial divergence model. The refined specimen-dependent parameters were the zero error and the background (Chebyshev polynomial fitting).

The starting model for the Rietveld refinement was the Na-exchanged form of titanium umbite⁷. and previous single crystal data of the mineral clinoptilolite⁸. Once profile fitting was completed the framework atomic coordinates were refined. Next, the cations and water positions were refined until least squares refinement converged. The cation sites and water molecules occupancies were freely refined while isotropic thermal factors were held constant. The elements were assigned to the extra-framework sites on the basis of electron density, distances to framework atoms, distances to other channel occupants, charge balance, and exchange ratios as determined by ICP-OES⁹ and confirmed by EDS and TG analyses. Crystallographic details from the Rietveld refinement, atomic coordinates, isotropic parameters and selected interatomic distances are shown in Tables S2-S7. The observed, calculated, and difference profiles are given in Figures S3 and S4. The powder XRD pattern of the Zn-exchanged ETS-4

compound	Zn-STS
	$K_{1.16}Zn_{0.42}TiSi_3O_9{\cdot}2H_2O$
formula weight	1469.96 g/mol
crystsyst	monoclinic
space group (No.)	$P_{2_{1}/c}(14)$
unit cell	a=7.205(9), b=10.034(2), c=12.89(4) Å,
	β=91.5(1)°
volume	931.9(9) Å ³
D(calcd)	$2.6189(1) \text{ g/cm}^3$
No. reflections	970
Reliability	$R_{\rm p} = 8.25, R_{\rm wp} = 11.08, R_{\rm exp} = 4.44,$
factors	$\chi^2 = 2.49$
structure factor	$R_{\rm B} = 4.31$

Table S2. Crystal data and Rietveld refinement parameters of Zn-STS

Table S3. Atomic coordinates, occupancies and isotropic displacement parameters for

Zn-exchanged	STS.
--------------	------

Atom	X	У	Z	Occ.	B (Å ²)
Ti1	0.2600(1)	0.7054(2)	0.205(6)0	1	1.46(9)
Si1	0.012(7)	0.432(6)	0.1733(4)	1	1.56(9)
Si2	0.7225(9)	0.296(2)	0.0420(3)	1	1.56(9)
Si3	0.421(1)	0.40(4)	0.171(4)	1	1.56(9)
01	0.244(9)	0.681(6)	0.36(4)	1	1.92(3)
O2	0.041(7)	0.591(5)	0.189(7)	1	1.92(3)
O3	0.257(1)	0.756(2)	0.066(8)	1	1.92(3)
O4	0.477(7)	0.822(4)	0.233(8)	1	1.92(3)
05	0.087(9)	0.864(9)	0.225(9)	1	1.92(3)
06	0.428(1)	0.561(8)	0.19(5)	1	1.92(3)
07	0.204(9)	0.3600(1)	0.156(7)	1	1.92(3)
08	0.521(9)	0.365(9)	0.063(2)	1	1.92(1)
09	0.880(4)	0.411(4)	0.073(4)	1	1.92(1)
K1	0.7449(6)	0.6989(2)	0.0990(8)	1	3.86(9)
Zn1/K2	0.314(8)0	0.4311(2)	0.6060(5)	0.42/0.16	5.71(3)
Ow1	-0.1303(4)	0.4623(7)	0.4079(3)	0.8	0.966(9)
Ow2	0.1114(4)	0.4455(8)	0.4372(7)	0.74	5.29(4)

Atom1	Atom 2	No	d(Å)	Atom1	Atom 2	No	d(Å)
Ti1	03	1x	1.860(4	K1	02	1x	2.639(6)
	O6	1x	1.889(8)		Ow2	1x	2.72(8)
	02	1x	1.95(1)		08	1x	2.878(8)
	04	1x	1.985(2)		O4	1x	2.904(8)
	05	1x	2.045(6)		O6	1x	2.963(9)
	01	1x	2.062(1)		09	1x	3.066(4)
Si1	07	1x	1.584(4)		05	1x	3.367(7)
	09	1x	1.596(9)		07	1x	3.379(4)
	02	1x	1.621(1)	Zn1/K2	Ow1	1x	1.711(4)
	05	1x	1.650(6)		Ow2	1x	2.595(4)
Si2	03	1x	1.509(2)		05	1x	3.063(3)
	08	1x	1.635(8)		07	1x	3.100(8)
	09	1x	1.663(9)		06	1x	3.125(3)
	01	1x	1.6824		O4	1x	3.17(9)
					03	1x	3.203(4)
					Ow2	1x	3.344(6)
					01	1x	3.380(9)
					08	1x	3.385(1)

Table S4. Selected atomic bond distances for Zn-exchanged STS.

compound	Zn-CPT
	$(Na_{0.2}Ca_{0.4}K_{0.4}Mg_{0.2})Zn_{2.2}Al_6Si_{30}O_{72}\cdot 19H_2O$
formula weight	2646.68 g/mol
crystal system	monoclinic
space group (No.)	C2/m (12)
unit cell	<i>a</i> =17.648(9), <i>b</i> =17.963(1), <i>c</i> =7.405(7) Å,
	β=116.2(4)°
volume	2105.8(5) Å ³
D(calc)	2.0868(8) g/cm ³
No. reflections	1151
Reliability	$R_p = 4.17, R_{wp} = 5.39, R_{exp} = 2.92, \chi^2 = 1.83$
factors	
structure factor	$R_{\rm B} = 1.53$

 Table S5. Crystal data and Rietveld refinement parameters of Zn-CPT.

 Table S6. Atomic coordinates, occupancies and isotropic displacement parameters for

Zn-exchanged CPT.

				0	D (82)
Atom	X	У	Z	Occ.	B (A ²)
Si1	0.17900(97)	0.1685(9)	0.0942(23)	0.8333	2.12(4)
Al1	0.17(9)	0.168(5)	0.0942(4)	0.1667	2.02(9)
Si2	0.21200(81)	0.41230(83)	0.5029(23)	0.8333	2.09(6)
Al2	0.21(2)	0.412(3)	0.502(9)	0.1667	1.80(3)
Si3	0.2084(11)	0.19115(74)	0.7145(20)	0.8333	1.61(8)
Al3	0.208(3)	0.1911(5)	0.714(50	0.1667	1.26(8)
Si4	0.06850(87)	0.29990(86)	0.4134(19)	0.8333	1.75(4)
Al4	0.068(5)	0.299(9)	0.413(4)	0.1667	1.60(9)
Si5	0	0.2190(12)	0	0.8333	2.3
Al5	0	0.21(9)	0	0.1667	2.3
01	0.2009(16)	1/2	0.4617(45)		2.15(7)
02	0.2320(13)	0.1225(12)	0.6109(37)		2.3
03	0.1835(13)	0.156(1)	0.880(3)		0.8
04	0.2307(12)	0.1026(12)	0.2459(31)		2.3
05	0	0.3182(17)	1/2		2.3
06	0.0817(13)	0.1677(11)	0.0505(31)		2.29(9)
07	0.1230(11)	0.2304(12)	0.5442(31)		1.97(9)
08	0.0123(13)	0.2733(13)	0.1829(26)		2.3
09	0.2140(13)	0.2514(13)	0.1916(27)		2.3
010	0.1155(13)	0.3768(12)	0.4198(32)		2.3
011	0.2342(93)	1/2	0.035(28)	0.693305	2.3
012	0.0384(39)	0	0.7182(87)	0.556151	2.3
013	0.0765(14)	0.4376(13)	0.9411(30)	0.856389	2.3
014	0	1/2	1/2	0.410834	2.3
015	0	0.1203(50)	1/2	0.339063	1.79(7)
016	0.0454(22)	0	0.1668(46)	0.72926	2.3
017	0.1365(61)	0	0.723(12)	0.522007	1.08(9)
Zn1	0.0921(39)	0	0.464(10)	0.133	2.3
Zn2	0.0437(40)	1/2	0.270(21)	0.17	0.800(1)
Ca2	0.039(12)	1/2	0.21(8)	0.1	1.58(1)
K1	0.241(27)	1/2	0.049(82)	0.1	2.3
Mg1	0	0	1/2	0.1	0.8
Zn3	0	0	1/2	0.5	0.850(7)
Na1	0.143(46)	0	0.67(11)	0.05	2.3

Si1 Al1	06	1x	1.6007(292)	Zn1	017	1x	1.7216(1057)
	O4	1x	1.6092(246)		Zn3 Mg1	1x	1.7597(798)
	03	1x	1.6384(311)		016	1x	1.9797(759)
	09	1x	1.6509(271)		012	1x	2.0921(809)
Si2 Al2	01	1x	1.6001(156)		012	1x	2.4536(1160)
I	O10	1x	1.6611(255)		015	2x	2.7868(860)
	02	1x	1.6776(344)		02	2x	3.1220(486)
Si3 Al3	02	1x	1.6017(304)		01	1x	3.4456(778)
	03	1x	1.6032(312)	Zn2	014	1x	2.1582(1555)
	09	1x	1.6069(264)		013	2x	2.2952(643)
	07	1x	1.6366(217)		01	1x	2.4959(665)
Si4 Al4	O10	1x	1.6012(274)		010	2x	2.5477(449)
I	07	1x	1.6119(239)		013	2x	2.9616(1490)
	08	1x	1.6213(208)		Si2 Al2	2x	3.1223(555)
	05	1x	1.6330(186)		Ca2	1x	3.1903(5586)
Si5 Al5	08	2x	1.6041(251)	Ca2	013	2x	2.1556(1645)
	06	2x	1.6097(250)		014	1x	2.5285(5907)
					013	2x	2.6126(5335)
					01	1x	2.6323(2135)
					010	2x	2.6980(2174)
					Ca2	1x	2.7898(7513)
					Zn2	1x	3.1903(5586)
					Si2 Al2	2x	3.2638(2018)
				K1	017	1x	2.0729(3979)
					Na1	1x	2.1804(7328)
					013	2x	2.8761(4353)
					03	2x	3.0471(1735)
					04	2x	3.0627(5291)
					02	2x	3.2174(4464)
					01	1x	3.4285(6629)
					012	1x	3.4921(4317)
				Zn3 Mg1	Zn1	2x	1.7597(798)
					015	2x	2.1610(898)
					017	2x	2.2389(840)
					Na1	2x	2.2682(7060)
					016	2x	2.9119(416)
				Nal	012	1x	2.0293(9330)
					K1	1x	2.1804(7328)
					Zn3 Mg1	1x	2.2682(7060)
					011	1x	2.2984(6234)
					02	2x	2.8476(5988)
					03	2x	3.1303(3231)
					015	2x	3.1328(5149)
					012	1x	3.2211(6128)
					01	1x	3.3042(9521)

 Table S7. Selected atomic bond distances for Zn-exchanged CPT.

Figure S3. Experimental (black line) and simulated (red line) powder XRD patterns of Zn-STS.

Figure S4. Experimental (black line) and simulated (red line) powder XRD patterns of Zn-CPT.

Figure S5. Le Bail fit of powder XRD patterns of the as-synthesized and Zn-exchanged ETS-4.

Single crystal X-ray diffraction. The single crystal X-ray diffraction analysis was performed on Zn-ETS-4. Crystal was mounted on a glass fiber and the diffraction data were collected at room temperature by ω -scan technique, on an Agilent Diffraction SuperNovaDual four-circle diffractometer equipped with Atlas CCD detector using mirror-monochromatized MoK α radiation from micro-focus source ($\lambda = 0.7107$ Å). The determination of cell parameters, data integration, scaling and absorption correction were carried out using the CrysAlis Pro program package¹⁰. The structures were solved by direct methods (SHELXS-97)¹¹ and refined by full-matrix least-square procedures on F2 (SHELXL-97)¹¹.

Details from the single crystal refinement are shown in Tables S8-S10.

compound	Zn-ETS-4
	$Zn_{3.15}H_{4.76}Si_{12}Ti_5O_{39}~6.6H_2O$
formula weight	1510.1(1) g/mol
wavelength (Å)	Μο Κα (0.71073)
Т (К)	290(2)
crystal system	Orthorhombic
space group (No.)	<i>Cmmm</i> (65)
unit cell	<i>a</i> =22.879(6) Å, <i>b</i> =7.2161(15) Å, <i>c</i> =6.765(2) Å
volume	1116.8(5) $Å^3$
D(calc)	$2.2450(4) \text{ g/cm}^3$
μ mm ⁻¹	2.913
θ range	$3.01^{\circ} - 26.05^{\circ}$
index ranges	$-26 \le h \le 26$
	$-8 \le k \le 8$
	$-7 \le 1 \le 8$
collected reflections	604
No.indep. reflections	233
R1	0.127
wR2 (all data)	0.292

Table S8. Single crystal data of Zn-ETS-4.

Atom	X	У	Z	Occ.	B (Å ²)
Zn1	1/4	1/4 0		0.43	4.50(1)
Zn2	0.1320(8)	0	0.600(3)	0.18	4.65(8)
Si1	0.3375(3)	0	0.2268(10)	1	3.07(9)
Si2	0.0654(6)	0.407(2)	1/2	0.5	4.34(3)
Ti1	1/4	1/4	1/2	1	4.10(6)
Ti2	0	0	1/2	0.5	4.73(7)
01	0.164(3)	1/2	0	1	19.7(4)
O2	0.3051(6)	0.1783(18)	0.288(3)	1	7.89(6)
03	0.4014(8)	0	0.303(4)	1	5.92(2)
O4	0	1/2	1/2	1	6.47(4)
05	0.0637(18)	0.180(5)	1/2	0.5	7.34(3)
O6	0.2176(11)	0	1/2	1	4.73(7)
07	0	0	0.787(14)	0.25	7.10(6)
O21	0.2030(17)	0	0	0.73	5.60(6)
O22	0	0.326(15)	0	0.64	16.5(8)
023	0	0	0	0.57	7.10(6)

Table S9. Atomic coordinates, occupancies and isotropic displacement parameters for

Atom1	Atom2	No	d(Å)		Atom1	Atom2	d(Å)
Si1	01	1x	1.535(7)	Zn1	O21	2x	2.100(2)
	02	2x	1.542(2)		02	4x	2.378(2)
	03	1x	1.550(2)		01	2x	2.669(5)
Si2	Si2	1x	1.342(2)	Zn2	06	1x	2.072(3)
	05	1x	1.638(4)		05	2x	2.142(4)
	04	1x	1.640(2)		02	2x	2.834(2)
	03	2x	1.674(3)				
Ti1	06	2x	1.950(2)				
	02	4x	1.978(2)				
Ti2	07	2x	1.942(2)				
	05	4x	1.952(4)				

Table S10. Selected atomic bond distances for Zn-exchanged ETS-4.

References

- 1. M. Chapman, A. L. Roe, Zeolites 1990, 10, 730.
- S. Nair, H.-K. Jeong, A. Chandrasekaran, C. M. Braunbarth, M. Tsapatsis, S. M. Kuznicki, *Chem. Mater.* 2001, 13, 4247.
- 3. R. P. Nikolova, B. L. Shivachev, S. Ferdov, Micropor. Mesopor. Mater. 2013, 165, 121.
- V. Kostov-Kytin, S. Ferdov, Yu. Kalvachev, B. Mihailova, O. Petrov, *Micropor*. *Mesopor. Mater.* 2007, 105, 232.
- TOPAS V3.0, General profile and structure analysis software for powder diffraction data, Bruker AXS, Karlsruhe, Germany.
- 6. R. W. Cheary, A. A. Coelho, J. Appl. Cryst. 1992, 25 109.
- 7. N. Doeblin, T. Armbruster, Micropor. Mesopor. Mater. 2007, 99, 279.
- 8. L. Dimova, B. L. Shivachev, R. P. Nikolova, Bulg. Chem. Commun. 2011, 43, 217.
- 9. L. Dimova, *Ph.D. Thesis*, Bulgarian Academy of Sciences, IMC-BAS 2011.
- 10. CrysAlis Pro 171.33.42, Oxford Diffraction Ltd., 2009.
- G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Solution; University of Geottingen, 1997.