Chiral phosphoric acid catalyzed enantioselective sulfamination of amino–alkenes

Lijun Li, a Zequan Li, a Deshun Huang, a Haining Wang a and Yian Shi a,b

a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
b Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA

Supporting Information

Table of Contents

General methods S-2
Experimental procedures and characterization data S-3
HPLC data for determination of enantiomeric excesses S-13
NMR spectra S-21
General Methods. All commercially available reagents were used without further purification. Toluene, tetrahydrofuran, and ethyl ether were distilled from sodium-benzophenone. CH$_3$CN and CH$_2$Cl$_2$ were distilled from CaH$_2$. CHCl$_3$ was distilled from P$_2$O$_5$. CH$_3$CCl$_3$ was dried by CaCl$_2$ and used directly. Column chromatography was performed on silica gel (200-300 mesh). 1H NMR spectra were recorded on a 400 MHz NMR spectrometer and 13C NMR spectra were recorded on a 100 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected.

Compounds 1a-c, 1j were prepared from commercially available alcohols by Mitsunobu reaction with 4-nitrobenzenesulfonylamide.1 Compounds 1d, 1e, 1h, and 1i were prepared by Wittig reaction of the corresponding aldehydes and {4-[(tert-butyldiphenylsilyl)oxy]butyl}triphenylphosphonium iodide,2 desilylation with TBAF, and Mitsunobu reaction with 4-nitrobenzenesulfonylamide.1 Compounds 1f and 1g were prepared by Wittig reaction of 4-oxobutyl acetate and the above phosphonium salt,2 followed by deacetylation with K$_2$CO$_3$ in MeOH, or desilylation with TBAF and subsequent Mitsunobu reaction with 4-nitrobenzenesulfonylamide.1 Compounds 1k and 1l were prepared by Johnson-Claisen rearrangement,$^{3-5}$ reduction with LiAlH$_4$, and Mitsunobu reaction 4-nitrobenzenesulfonylamide.1 Phosphoric acids 3a and 3b were prepared according to the reported procedure.6 Phosphoric acid 3c was prepared according to the reported procedure and recrystallized from dichloromethane/hexane.7

Representative procedure for asymmetric sulfamination (Table 2, entry 1).

To a stirred solution of alkene 1a (0.102 g, 0.30 mmol) and chiral phosphoric acid 3c (0.023 g, 0.030 mmol) in CHCl₃ (15.0 mL) was added PhSOMe (2) (0.051 g, 0.36 mmol) at 35 °C. Upon stirring at 35 °C for 72 h, the reaction mixture was quenched with Et₃N (0.6 mL), concentrated, and purified by column chromatography (silica gel, eluent: petroleum ether/ethyl acetate/dichloromethane = 50:1:0 to 20:1:1) to give pyrrolidine 4a as yellow solid (0.108 g, 80%).

(R)-1-(4-nitrophenylsulfonyl)-2-[(R)-1-(phenylthio)hexyl]pyrrolidine (Table 2, entry 1)

4a

Yellow solid; mp. 133-135 °C; [α]D²⁰ = +205.1 (c 1.00, CHCl₃) (86% ee); IR (film) 1522, 1159 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.8 Hz, 2H), 7.60-7.49 (m, 4H), 7.46-7.33 (m, 3H), 3.89 (dt, J = 11.6, 3.2 Hz, 1H) 3.58-3.44 (m, 2H), 3.25-3.16 (m, 1H), 2.05-1.92 (m, 1H), 1.90-1.65 (m, 4H), 1.58-1.45 (m, 1H), 1.45-1.20 (m, 6H), 0.93 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 142.1, 135.2, 132.2, 129.4, 128.9, 127.3, 124.3, 62.5, 52.1, 51.4, 31.9, 27.7, 27.4, 26.8, 24.6, 22.8, 14.3; Anal. Calcd for C₂₂H₂₈N₂O₄S₂: C, 58.90; H, 6.29; N, 6.24; Found: C, 58.74; H, 6.35; N, 6.15.

(R)-1-(4-nitrophenylsulfonyl)-2-[(R)-1-(phenylthio)ethyl]pyrrolidine (Table 2, entry 2)

4b

White solid; mp. 139-141 °C; [α]D²⁰ = +208.5 (c 1.04, CHCl₃) (78% ee); IR (film) 1530,
1351 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.20 (d, $J = 8.8$ Hz, 2H), 7.62 (d, $J = 8.8$ Hz, 2H), 7.56-7.49 (m, 2H), 7.45-7.33 (m, 3H), 4.12-4.02 (m, 1H), 3.57-3.46 (m, 2H), 3.22-3.12 (m, 1H), 2.05-1.94 (m, 1H), 1.83-1.71 (m, 1H), 1.70-1.57 (m, 1H), 1.47-1.33 (m, 1H), 1.30 (d, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 150.2, 142.1, 134.6, 132.3, 129.4, 128.9, 127.5, 124.3, 62.1, 51.1, 45.8, 26.0, 24.7, 13.3; HRMS (ESI) Calcd for C$_{18}$H$_{21}$N$_2$O$_4$S$_2$ (M+H): 393.0937; Found: 393.0932.

(R)-1-(4-nitrophenylsulfonyl)-2-[(R)-1-(phenylthio)propyl]pyrrolidine (Table 2, entry 3)

![Image of (R)-1-(4-nitrophenylsulfonyl)-2-[(R)-1-(phenylthio)propyl]pyrrolidine](4c)

Pale yellow solid; mp. 148-149 °C; $[\alpha]_D^{20} = +211.1$ (c 0.95, CHCl$_3$) (84% ee); IR (film) 1534, 1350 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.18 (d, $J = 8.4$ Hz, 2H), 7.63-7.48 (m, 4H), 7.45-7.32 (m, 3H), 3.84-3.74 (m, 1H), 3.59-3.44 (m, 2H), 3.27-3.15 (m, 1H), 2.07-1.88 (m, 2H), 1.83-1.62 (m, 2H), 1.42-1.24 (m, 2H), 1.20 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 150.2, 142.1, 134.6, 132.3, 129.4, 128.9, 127.2, 124.3, 62.6, 54.3, 51.3, 26.8, 24.5, 20.8, 12.9; HRMS (ESI) Calcd for C$_{19}$H$_{23}$N$_2$O$_4$S$_2$ (M+H): 407.1094; Found: 407.1094.

(R)-1-(4-nitrophenylsulfonyl)-2-[(R)-1-(phenylthio)decyl]pyrrolidine (Table 2, entry 4)

![Image of (R)-1-(4-nitrophenylsulfonyl)-2-[(R)-1-(phenylthio)decyl]pyrrolidine](4d)

White solid; mp. 92-94 °C; $[\alpha]_D^{20} = +177.8$ (c 1.02, CHCl$_3$) (85% ee); IR (film) 1519, 1350, 1161 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.17 (d, $J = 8.8$ Hz, 2H), 7.60-7.50 (m, 4H), 7.45-7.33 (m, 3H), 3.95-3.83 (m, 1H), 3.56-3.44 (m, 2H), 3.27-3.16 (m, 1H), 2.05-1.91 (m, 1H), 1.90-1.64 (m, 4H), 1.58-1.20 (m, 15H), 0.89 (t, $J = 6.8$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 150.2, 142.1, 134.6, 132.2, 129.4, 128.9, 127.3, 124.3, 62.5, 52.1, 51.4, 32.1, 29.7, 29.5, 28.0, 27.5, 26.7, 24.5, 22.9, 14.3; HRMS (ESI) Calcd for C$_{26}$H$_{37}$N$_2$O$_4$S$_2$ (M+H): 505.2189; Found: 505.2185.

(R)-1-(4-nitrophenylsulfonyl)-2-[(R)-3-phenyl-1-(phenylthio)propyl]pyrrolidine (Table 2, entry 3)
entry 5)

Yellow solid; mp. 140-142 °C; \([\alpha]_D^{20} = +179.0 \ (c \ 1.04, \ \text{CHCl}_3) \ (83\% \ ee); \ \text{IR (film)} 1530, 1351, 1164 \text{ cm}^{-1}; \ ^1\text{H NMR} (400 MHz, \text{CDCl}_3) \delta 8.17 \ (d, \ J = 8.8 \text{ Hz}, 2H), 7.58-7.49 \ (m, 4H), 7.45-7.37 \ (m, 3H), 7.33 \ (t, \ J = 7.2 \text{ Hz}, 2H), 7.29-7.20 \ (m, 3H), 3.92 \ (dt, \ J = 11.6, 3.2 \text{ Hz}, 1H), 3.58-3.43 \ (m, 2H), 3.25-3.08 \ (m, 2H), 2.87-2.75 \ (m, 1H), 2.27-2.13 \ (m, 1H), 2.07-1.91 \ (m, 1H), 1.80-1.67 \ (m, 2H), 1.66-1.52 \ (m, 1H), 1.40-1.24 \ (m, 1H); \ ^{13}\text{C NMR} (100 MHz, \text{CDCl}_3) \delta 150.2, 142.1, 141.7, 134.9, 132.2, 129.4, 128.9, 128.73, 128.67, 127.4, 126.3, 124.3, 62.5, 51.8, 51.3, 34.2, 29.6, 26.8, 24.5; \ \text{HRMS (ESI) Calcd for C}_{25}\text{H}_{27}\text{N}_2\text{O}_4\text{S}_2 (M+H): 483.1407; \ \text{Found: 483.1405.}

(R)-2-[(R)-4-(tert-butyldiphenylsilyloxy)-1-(phenylthio)butyl]-1-(4-nitrophenylsulfonyl)pyrrolidine (Table 2, entry 6)

White solid; mp. 102-104 °C; \([\alpha]_D^{20} = +133.2 \ (c \ 1.03, \ \text{CHCl}_3) \ (83\% \ ee); \ \text{IR (film) 1559, 1165 \text{ cm}^{-1}; \ ^1\text{H NMR} (400 MHz, \text{CDCl}_3) \delta 8.17 \ (d, \ J = 8.8 \text{ Hz}, 2H), 7.74-7.66 \ (m, 4H), 7.60-7.50 \ (m, 4H), 7.48-7.34 \ (m, 9H), 3.92-3.83 \ (m, 1H), 3.78 \ (t, \ J = 6.0 \text{ Hz}, 2H) 3.57-3.44 \ (m, 2H), 3.26-3.14 \ (m, 1H), 2.13-1.92 \ (m, 3H), 1.83-1.62 \ (m, 3H), 1.45-1.20 \ (m, 2H), 1.08 \ (s, 9H); \ ^{13}\text{C NMR} (100 MHz, \text{CDCl}_3) \delta 150.2, 142.2, 141.7, 135.8, 135.81, 135.1, 134.2, 132.3, 129.8, 129.4, 128.9, 127.9, 127.4, 124.3, 63.8, 62.5, 52.3, 51.3, 31.3, 27.1, 26.7, 24.5, 24.2, 19.5; \ \text{HRMS (ESI) Calcd for C}_{36}\text{H}_{43}\text{N}_2\text{O}_5\text{S}_2\text{Si(M+H): 675.2377; Found: 675.2360.}

(R)-4-[(R)-1-(4-nitrophenylsulfonyl)pyrrolidin-2-yl]-4-(phenylthio)butyl acetate (Table 2, entry 7)

Pale yellow solid; mp. 106-108 °C; \([\alpha]_D^{20} = +177.5 \ (c \ 1.05, \ \text{CHCl}_3) \ (80\% \ ee); \ \text{IR (film) }
1734, 1530, 1350 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.18 (d, \(J = 8.8\) Hz, 2H), 7.59-7.51 (m, 4H), 7.46-7.36 (m, 3H), 4.17 (t, \(J = 6.0\) Hz, 2H), 3.94-3.85 (m, 1H), 3.60-3.44 (m, 2H), 3.25-3.15 (m, 1H), 2.19-2.06 (m, 1H), 2.09 (s, 3H), 2.05-1.68 (m, 5H), 1.44-1.29 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 171.4, 150.2, 141.8, 134.7, 132.4, 129.4, 128.9, 127.5, 124.3, 64.2, 62.4, 51.8, 51.4, 27.1, 26.7, 24.4, 24.1, 21.2; HRMS (ESI) Calcd for C\(_{22}\)H\(_{27}\)N\(_2\)O\(_4\)S\(_2\) (M+H): 479.1305; Found: 479.1300.

(R)-2-[(R)-3-methyl-1-(phenylthio)butyl]-1-(4-nitrophenylsulfonyl)pyrrolidine (Table 2, entry 8)

Pale yellow solid; mp. 99-102 °C; \([\alpha]_D^{20} = +231.6\) (c 1.05, CHCl\(_3\)) (85% ee); IR (film) 1531, 1351, 1165 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.17 (d, \(J = 8.8\) Hz, 2H), 7.58-7.51 (m, 4H), 7.45-7.34 (m, 3H), 4.00 (dt, \(J = 11.6, 3.2\) Hz, 1H), 3.57-3.43 (m, 2H), 3.24-3.14 (m, 1H), 2.10-1.94 (m, 2H), 1.81-1.65 (m, 2H), 1.62-1.53 (m, 1H), 1.39-1.25 (m, 2H), 1.05 (d, \(J = 6.8\) Hz, 3H), 1.02 (d, \(J = 6.8\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 150.2, 142.1, 135.1, 132.3, 129.4, 128.9, 127.3, 124.3, 62.4, 51.8, 51.4, 27.1, 26.7, 24.4, 24.1, 21.2; HRMS (ESI) Calcd for C\(_{22}\)H\(_{27}\)N\(_2\)O\(_4\)S\(_2\) (M+H): 479.1305; Found: 479.1300.

(R)-2-[(R)-2,2-dimethyl-1-(phenylthio)propyl]-1-(4-nitrophenylsulfonyl)pyrrolidine (Table 2, entry 9)

Yellow solid; mp. 105-107 °C; \([\alpha]_D^{20} = +218.9\) (c 0.78, CHCl\(_3\)) (85% ee); IR (film) 1529, 1350, 1163 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.20 (d, \(J = 8.8\) Hz, 2H), 7.60 (d, \(J = 8.0\) Hz, 2H), 7.51 (d, \(J = 6.8\) Hz, 2H), 7.42-7.28 (m, 3H), 3.95-3.83 (m, 1H), 3.57-3.44 (m, 1H), 3.32-3.13 (m, 2H), 2.04-1.91 (m, 1H), 1.88-1.75 (m, 1H), 1.69-1.55 (m, 1H), 1.37-1.17 (m, 1H), 1.26 (s, 9H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 150.1, 143.0, 137.0, 132.6, 129.3, 128.9, 127.2, 124.2, 65.4, 63.4, 50.3, 35.9, 30.7, 29.7, 24.2; HRMS (ESI) Calcd for C\(_{21}\)H\(_{27}\)N\(_2\)O\(_4\)S\(_2\) (M+H): 435.1407; Found: 435.1405.
(R)-1-(4-nitrophenylsulfonyl)-2-[(R)-1-(phenylthio)propyl]piperidine (Table 2, entry 10)

Yellow oil; \([\alpha]_D^{20} = +72.9 \text{ (c 1.01, CHCl}_3\text{) (71% ee)}; \quad \text{IR (film) 1529, 1348, 1188 cm}^{-1};
\text{H NMR (400 MHz, CDCl}_3\text{) } \delta 8.29 (d, J = 8.8 \text{ Hz, 2H}), 8.02 (d, J = 8.8 \text{ Hz, 2H}), 7.38-7.32 (m, 2H), 7.31-7.20 (m, 3H), 4.13-4.03 (m, 1H), 3.74 (dd, J = 14.8, 4.4 Hz, 1H), 3.63-3.53 (m, 1H), 3.08-2.95 (m, 1H), 1.85-1.30 (m, 8H), 1.05 (t, J = 7.2 \text{ Hz, 3H}); \quad \text{13C NMR (100 MHz, CDCl}_3\text{) } \delta 149.9, 147.1, 135.5, 132.5, 129.2, 128.7, 127.3, 124.3, 55.9, 51.3, 42.0, 25.7, 24.3, 23.8, 18.8, 9.8; \quad \text{HRMS (ESI) Calcd for C}_{20}H_{25}N_2O_4S_2 (M+H): 421.1250; Found: 421.1249.}

(2R,3S)-1-(4-nitrophenylsulfonyl)-2-phenyl-3-(phenylthio)piperidine (Table 2, entry 11)

Yellow syrup; \([\alpha]_D^{20} = -45.3 \text{ (c 0.76, CHCl}_3\text{) (44% ee)}; \quad \text{IR (film) 1529, 1349, 1162 cm}^{-1};
\text{H NMR (400 MHz, CDCl}_3\text{) } \delta 8.28 (d, J = 8.8 \text{ Hz, 2H}), 8.04 (d, J = 8.8 \text{ Hz, 2H}), 7.47-7.16 (m, 10H), 5.39 (s, 1H), 3.99-3.81 (m, 2H), 3.38-3.22 (m, 1H), 1.95-1.76 (m, 3H), 1.54-1.42 (m, 1H); \quad \text{13C NMR (100 MHz, CDCl}_3\text{) } \delta 150.0, 146.6, 138.2, 134.8, 132.1, 129.6, 129.1, 128.9, 127.9, 127.8, 126.9, 124.1, 60.8, 49.4, 42.5, 24.1, 20.1; \quad \text{HRMS (ESI) Calcd for C}_{33}H_{28}O_6S_2 (M+H): 455.1094; Found: 455.1091.}

(2R,3S)-2-(naphthalen-1-yl)-1-(4-nitrophenylsulfonyl)-3-(phenylthio)piperidine (Table 2, entry 12)

Pale yellow solid; mp. 160-162 °C; \([\alpha]_D^{20} = +4.1 \text{ (c 0.93, CHCl}_3\text{) (55% ee)}; \quad \text{IR (film) 1528, 1348, 1164 cm}^{-1};
\text{H NMR (400 MHz, CDCl}_3\text{) } \delta 8.07 (d, J = 8.4 \text{ Hz, 2H}), 7.80-7.72 (m, 3H), 7.66 (d, J = 8.0 \text{ Hz, 1H}), 7.61-7.52 (m, 2H), 7.46-7.33 (m, 4H), 7.33-7.20 (m, 3H),...
7.14 (t, J = 7.6 Hz, 1H), 5.98 (s, 1H), 4.15-4.03 (m, 1H), 3.86-3.70 (m, 2H), 2.24-2.07 (m, 1H), 1.92-1.62 (m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 149.7, 145.9, 134.9, 134.8, 134.1, 133.7, 130.5, 129.6, 129.3, 128.8, 128.7, 128.5, 127.0, 126.0, 125.0, 124.6, 123.8, 122.7, 58.4, 50.3, 44.5, 24.2, 20.4; HRMS (ESI) Calcd for C\(_{27}\)H\(_{24}\)N\(_2\)O\(_4\)S\(_2\)(M+Na): 527.1070; Found: 527.1060.

The determination of the absolute configuration of pyrrolidine 4c (Scheme 2)

![Scheme 2](image)

To a stirred mixture of pyrrolidine 4c (0.315 g, 0.77 mmol), K\(_2\)CO\(_3\) (0.428 g, 3.10 mmol), CH\(_3\)CN (14.7 mL), and DMSO (0.3 mL) was added PhSH (0.342 g, 3.10 mmol) at 50 °C. Upon stirring at 50 °C for 7 h, the reaction mixture was quenched with saturated aqueous NH\(_4\)Cl solution, concentrated to remove CH\(_3\)CN, extracted with CH\(_2\)Cl\(_2\) (3×50 mL), washed with brine, dried over MgSO\(_4\), filtered, concentrated, and purified by column chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 10:1 to 5:1 to 2:1) to afford pyrrolidine 6c as yellow oil (0.134 g, 79%).

(R)-2-[(R)-1-(phenylthio)propyl]pyrrolidine (6c) (Scheme 2). \([\alpha]_D^{20} = +17.8\ (c\ 1.03,\ \text{CHCl}_3);\) IR (film) 1583, 1479, 1438 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.44 (d, \(J = 7.2\) Hz, 2H), 7.26 (t, \(J = 7.6\) Hz, 2H), 7.23-7.17 (m, 1H), 3.22-3.14 (m, 1H), 3.07-2.93 (m, 2H), 2.91-2.82 (m, 1H), 2.01 (br s, 1H), 1.92-1.67 (m, 4H), 1.62-1.48 (m, 2H), 1.07 (t, \(J = 7.6\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 136.2, 132.1, 129.0, 126.8, 61.8, 57.7, 46.6, 29.7, 26.0, 25.7, 11.8; HRMS (ESI) Calcd for C\(_{13}\)H\(_{21}\)NS(M+H): 222.1311; Found: 222.1308.

A solution of pyrrolidine 6c (0.134 g, 0.61 mmol), DMAP (0.037 g, 0.31 mmol), and (Boc)_2O (0.266 g, 1.22 mmol) in THF (5 mL) was stirred at room temperature for 12 h, concentrated, and purified by column chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 20:1) to afford pyrrolidine 8c as colorless oil (0.151 g, 77%). \[\alpha\]_D^{20} = -31.5 (c 1.10, CHCl_3).

A solution of pyrrolidine 8c (0.170 g, 0.53 mmol) in ethanol (7 mL) was added Raney Ni (1.1 g) at room temperature. Upon stirring at 80 °C for 2 h, the reaction mixture was filtered through a plug of silica gel with ethanol as eluent, concentrated, and purified by column chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 30:1) to afford N-Boc-pyrrolidine 7c along with small amounts of 9c as colorless oil. The mixture was hydrogenated with Pd/C (0.018 g) in ethanol (10 mL) under hydrogen (1 atm) at rt for 24 h to give pyrrolidine 7c as colorless oil (0.050 g, 45% from 8c) after purification by column chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 30:1). \[\alpha\]_D^{20} = +40.2 (c 0.99, CHCl_3) (84% ee) \{lit.\} for S-7c; \[\alpha\]_D^{21} = +45.6 (c 0.46, CHCl_3); IR (film) 1697, 1395, 1173 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl_3) \(\delta\) 3.85-3.64 (m, 1H), 3.50-3.22 (m, 2H), 2.01-1.71 (m, 4H), 1.70-1.57 (m, 1H), 1.45 (s, 9H), 1.39-1.17 (m, 3H), 0.91 (t, \(J = 7.2\) Hz, 3H); \(^1^3\)C NMR (100 MHz, CDCl_3) \(\delta\) 154.9, 79.0, 57.2, 46.6 and 46.2, 37.1 and 36.5, 30.8 and 30.1, 28.8, 23.9 and 23.3, 19.7, 14.3; HRMS (ESI) Calcd for C_{12}H_{23}NNaO_2(M+Na): 236.1621; Found: 236.1617.

The determination of the absolute configuration of piperidine 4j (Scheme 2)
Piperidine 4j was converted to 7j in a manner similar to transformation of pyrrolidine 4c to 7c.

(R)-2-[(R)-1-(phenylthio)propyl]piperidine (Scheme 2)

Pale yellow oil; $[\alpha]_D^{20} = +7.4$ (c 0.91, CHCl₃); IR (film) 3316, 1479, 1438 cm⁻¹; 1H NMR (400 MHz, CDCl₃) δ 7.42 (d, $J = 7.6$ Hz, 2H), 7.30-7.23 (m, 2H), 7.23-7.17 (m, 1H), 3.16-3.07 (m, 1H), 2.94-2.85 (m, 1H), 2.62 (td, $J = 12.0$, 2.8 Hz, 1H), 2.57-2.50 (m, 1H), 2.20 (br s, 1H), 1.88-1.69 (m, 3H), 1.63-1.19 (m, 5H), 1.06 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl₃) δ 136.1, 132.1, 129.0, 126.8, 59.4, 58.3, 47.5, 30.3, 26.5, 25.1, 24.5, 11.6; HRMS (ESI) Calcd for C₁₄H₂₂NS(M+H): 236.1468; Found: 236.1468.

(R)-tert-butyl 2-[(R)-1-(phenylthio)propyl]piperidine-1-carboxylate

Pale yellow oil; $[\alpha]_D^{20} = +54.3$ (c 1.03, CHCl₃); IR (film) 1690, 1142 cm⁻¹; 1H NMR (400 MHz, CDCl₃) δ 7.43 (d, $J = 7.2$ Hz, 2H), 7.30-7.23 (m, 2H), 7.23-7.17 (m, 1H), 4.37-4.24 (m, 1H), 4.04-3.90 (m, 1H), 3.63-3.54 (m, 1H), 2.71-2.57 (m, 1H), 1.82-1.35 (m, 8H), 1.50 (s, 9H), 1.06 (t, $J = 7.6$ Hz, 3H); 13C NMR (100 MHz, CDCl₃) δ 155.3, 136.6, 132.7, 129.0, 126.9, 79.7, 52.4, 51.4, 39.4, 28.7, 26.3, 25.5, 24.3, 19.3, 9.4; HRMS (ESI) Calcd for C₁₉H₃₀NO₂S (M+H): 336.1992; Found: 336.1995.
Scheme 2

\[
\text{N} \quad \text{Boc}\]

Colorless oil; \([\alpha]_D^{20} = +22.0 (c\ 1.15, \text{CHCl}_3)\ (70\%\ \text{ee})\ \{\text{lit. for } R\text{-7j};\ [\alpha]_D = -39.8 (c\ 0.60, \text{CHCl}_3)\};\ \text{IR (film) 1692, 1416, 1148 cm}^{-1};\ 1^H\ \text{NMR (400 MHz, CDCl}_3)\ \delta 4.28-4.13\ (m, 1H), 4.02-3.87\ (m, 1H), 2.74\ (t, J = 13.2 Hz, 1H), 1.71-1.49\ (m, 6H), 1.44\ (s, 9H), 1.42-1.17\ (m, 4H), 0.91\ (t, J = 7.6 Hz, 3H);\ 13^C\ \text{NMR (100 MHz, CDCl}_3)\ \delta 155.3, 79.1, 50.3, 38.8, 32.1, 28.7, 25.9, 19.7, 19.2, 14.2;\ \text{HRMS (ESI) Calcd for } C_{13}H_{25}N\text{NaO}_2\ (M+Na): 250.1778;\ \text{Found: 250.1780.}

The determination of the absolute configuration of piperidine 5k (Scheme 2)

\[
\begin{align*}
\text{N} & \quad \text{SPh} \\
\text{Ph} & \quad \text{Ns} \\
\text{5k} & \\
\text{PhSH, K}_2\text{CO}_3 & \\
\text{CH}_3\text{CN/DMSO} & \\
50\ ^\circ\text{C}, 78\% & \\
\rightarrow & \\
\text{N} & \quad \text{SPh} \\
\text{Ph} & \quad \text{Boc} \\
\text{6k} & \\
\text{(Boc)}_2\text{O}, \text{DMAP} & \\
\text{THF, rt, 65\%} & \\
\rightarrow & \\
\text{N} & \quad \text{SPh} \\
\text{Ph} & \quad \text{Boc} \\
\text{7k} & \\
\text{Pd/C, H}_2 & \\
\text{EtOH, rt+} & \\
77\% & \\
\rightarrow & \\
\text{N} & \quad \text{SPh} \\
\text{Ph} & \quad \text{Boc} \\
\text{8k} & \\
\text{Raney Ni} & \\
\text{EtOH, 80\ ^\circ\text{C}} & \\
\rightarrow & \\
\text{N} & \quad \text{SPh} \\
\text{Ph} & \quad \text{Boc} \\
\text{7k} & \\
\text{EtOH, rt} & \\
77\% & \\
\rightarrow & \\
\text{N} & \quad \text{SPh} \\
\text{Ph} & \quad \text{Boc} \\
\text{9k} & \\
\text{Pd/C, H}_2 & \\
\text{EtOH, rt, 77\% from 8k} & \\
77\% & \\
\rightarrow & \\
\text{N} & \quad \text{SPh} \\
\text{Ph} & \quad \text{Boc} \\
\text{7k} & \\
\end{align*}
\]

Piperidine 5k was converted to 7k in a manner similar to transformation of pyrrolidine 4c to 7c.

\((2R,3S)-2\text{-phenyl-3-(phenylthio)piperidine (Scheme 2)}\)

\[
\begin{align*}
\text{N} & \quad \text{SPh} \\
\text{Ph} & \\
\text{6k} & \\
\text{EtOH, 80\ ^\circ\text{C}} & \\
\rightarrow & \\
\text{N} & \quad \text{SPh} \\
\text{Ph} & \\
\end{align*}
\]

Colorless oil; \([\alpha]_D^{20} = -28.0 (c\ 1.03, \text{CHCl}_3);\ \text{IR (film) 3325, 1474, 1438 cm}^{-1};\ 1^H\ \text{NMR (400 MHz, CDCl}_3)\ \delta 7.35\ (d, J = 7.2 Hz, 2H), 7.30-7.19\ (m, 3H), 7.17-7.09\ (m, 5H), 3.52\ (d,
J = 10.0 Hz, 1H), 3.20 (td, J = 10.4, 3.6 Hz, 1H), 3.13-3.05 (m, 1H), 2.74 (td, J = 11.6, 3.2 Hz, 1H), 2.28-2.18 (m, 1H), 1.82-1.48 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 142.5, 134.6, 133.0, 128.7, 128.4, 128.2, 127.9, 126.9, 68.0, 52.0, 47.3, 33.9, 27.3; HRMS (ESI) Calcd for C17H20NS(M+H): 270.1311; Found: 270.1310.

(2R,3S)-tert-butyl 2-phenyl-3-(phenylthio)piperidine-1-carboxylate

8k

Colorless oil; [α]D20 = -23.7 (c 0.97, CHCl3); IR (film) 1692, 1415 cm⁻¹; 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 7.6 Hz, 2H), 7.36-7.27 (m, 4H), 7.26-7.15 (m, 4H), 5.51 (s, 1H), 4.20 (dd, J = 13.6, 3.2 Hz, 1H), 4.10 (s, 1H), 2.81 (td, J = 13.2, 3 Hz, 1H), 2.11-1.96 (m, 1H), 1.95-1.80 (m, 2H), 1.55-1.30 (m, 1H), 1.42 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 156.1, 139.5, 135.7, 132.1, 129.3, 128.9, 127.3, 127.0, 126.5, 80.0, 57.1, 47.9, 39.7, 28.5, 24.6, 20.5; HRMS (ESI) Calcd for C22H28NO2S (M+H): 370.1835; Found: 370.1845.

Scheme 2

7k

White solid; mp 71-73 °C; [α]D20 = -43.6 (c 1.06, CHCl3) (42% ee) {lit. for R-7k; [α]D22 = +76.2 (c 1.00, CHCl3)}; IR (film) 1691, 1157 cm⁻¹; 1H NMR (400 MHz, CDCl3) δ 7.34 (t, J = 7.6 Hz, 2H), 7.25-7.18 (m, 3H), 5.42 (s, 1H), 4.05 (d, J = 13.6 Hz, 1H), 2.83-2.70 (m, 1H), 2.36-2.24 (m, 1H), 1.94-1.82 (m, 1H), 1.64-1.35 (m, 4H), 1.46 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 155.9, 140.7, 128.7, 126.7, 126.5, 79.7, 53.5, 40.3, 28.7, 28.3, 25.7, 19.6; HRMS (ESI) Calcd for C16H23NO2 (M+H): 262.1802; Found: 262.1803.

The determination of enantiomeric excess

Table 2, entry 1

![Chemical structure](image)

HPLC Condition: **Column:** Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV256 nm.

<table>
<thead>
<tr>
<th>Index</th>
<th>Time (Min)</th>
<th>Area % (%)</th>
<th>Start (Min)</th>
<th>End (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.06</td>
<td>50.00</td>
<td>14.00</td>
<td>17.05</td>
</tr>
<tr>
<td>2</td>
<td>19.29</td>
<td>49.99</td>
<td>18.37</td>
<td>21.70</td>
</tr>
<tr>
<td>Total</td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Racemic

Chiral

![Chromatograms](image)

Table 2, entry 2

![Chemical structure](image)

HPLC Condition: **Column:** Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV256 nm.

<table>
<thead>
<tr>
<th>Index</th>
<th>Time (Min)</th>
<th>Area % (%)</th>
<th>Start (Min)</th>
<th>End (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.15</td>
<td>03.00</td>
<td>14.00</td>
<td>17.05</td>
</tr>
<tr>
<td>2</td>
<td>19.53</td>
<td>98.10</td>
<td>19.75</td>
<td>22.67</td>
</tr>
<tr>
<td>Total</td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Racemic

Chiral

![Chromatograms](image)
Table 2, entry 3

4c

HPLC Condition:
Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.;
Eluent: Hexanes/IPA (90/10);
Flow rate: 1.0 mL/min;
Detection: UV252 nm.

<table>
<thead>
<tr>
<th>Index</th>
<th>Time [min]</th>
<th>Area [%]</th>
<th>Start [min]</th>
<th>End [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.47</td>
<td>50.04</td>
<td>13.33</td>
<td>15.17</td>
</tr>
<tr>
<td>2</td>
<td>20.00</td>
<td>49.95</td>
<td>18.54</td>
<td>22.57</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

Racemic

Chiral

Table 2, entry 4

4d

HPLC Condition:
Column: Chiralpak IC-H, Daicel Chemical Industries, Ltd.;
Eluent: Hexanes/IPA (95/5);
Flow rate: 1.0 mL/min;
Detection: UV256 nm.

<table>
<thead>
<tr>
<th>Index</th>
<th>Time [min]</th>
<th>Area [%]</th>
<th>Start [min]</th>
<th>End [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.23</td>
<td>19.56</td>
<td>13.04</td>
<td>16.26</td>
</tr>
<tr>
<td>2</td>
<td>20.25</td>
<td>50.00</td>
<td>20.92</td>
<td>22.03</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

Racemic

Chiral
Table 2, entry 5

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (90/10); Flow rate: 1.0 mL/min; Detection: UV252 nm.

Racemic

Chiral

Table 2, entry 6

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV258 nm.
Table 2, entry 7

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (90/10); Flow rate: 1.0 mL/min; Detection: UV230 nm.

Racemic

<table>
<thead>
<tr>
<th>Index</th>
<th>Time (Min)</th>
<th>Area % (%)</th>
<th>Start (Min)</th>
<th>End (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.63</td>
<td>50.013</td>
<td>16.63</td>
<td>16.72</td>
</tr>
<tr>
<td>2</td>
<td>24.61</td>
<td>49.887</td>
<td>23.65</td>
<td>25.68</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chiral

<table>
<thead>
<tr>
<th>Index</th>
<th>Time (Min)</th>
<th>Area % (%)</th>
<th>Start (Min)</th>
<th>End (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.01</td>
<td>90.003</td>
<td>16.90</td>
<td>20.03</td>
</tr>
<tr>
<td>2</td>
<td>24.84</td>
<td>9.997</td>
<td>24.03</td>
<td>26.29</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2, entry 8

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV258 nm.

Racemic

<table>
<thead>
<tr>
<th>Index</th>
<th>Time (Min)</th>
<th>Area % (%)</th>
<th>Start (Min)</th>
<th>End (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.70</td>
<td>50.034</td>
<td>9.18</td>
<td>9.84</td>
</tr>
<tr>
<td>2</td>
<td>12.54</td>
<td>49.966</td>
<td>11.07</td>
<td>13.32</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chiral

<table>
<thead>
<tr>
<th>Index</th>
<th>Time (Min)</th>
<th>Area % (%)</th>
<th>Start (Min)</th>
<th>End (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.91</td>
<td>92.822</td>
<td>8.89</td>
<td>10.84</td>
</tr>
<tr>
<td>2</td>
<td>12.32</td>
<td>7.178</td>
<td>11.89</td>
<td>13.29</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2, entry 9

\[
\text{HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV256 nm.}
\]

<table>
<thead>
<tr>
<th>Index</th>
<th>Time (Min)</th>
<th>Area %</th>
<th>Start (Min)</th>
<th>End (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.87</td>
<td>59.991</td>
<td>22.611</td>
<td>26.53</td>
</tr>
<tr>
<td>2</td>
<td>27.98</td>
<td>46.908</td>
<td>26.65</td>
<td>30.74</td>
</tr>
<tr>
<td>Total</td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2, entry 10

\[
\text{HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (90/10); Flow rate: 1.0 mL/min; Detection: UV256 nm.}
\]

<table>
<thead>
<tr>
<th>Index</th>
<th>Time (Min)</th>
<th>Area %</th>
<th>Start (Min)</th>
<th>End (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.89</td>
<td>92.561</td>
<td>22.63</td>
<td>26.53</td>
</tr>
<tr>
<td>2</td>
<td>27.98</td>
<td>7.439</td>
<td>26.98</td>
<td>28.22</td>
</tr>
<tr>
<td>Total</td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2, entry 11

\[
\begin{align*}
\text{HPLC Condition: Column:} & \quad \text{Chiralpak AD-H, Daicel Chemical Industries, Ltd.;} \\
\text{Eluent:} & \quad \text{Hexanes/IPA (90/10); Flow rate:} \quad 1.0 \text{ mL/min; Detection:} \quad \text{UV256 nm.}
\end{align*}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Index} & \text{Time [Min]} & \text{Area %} & \text{Start [Min]} & \text{End [Min]} \\
\hline
1 & 33.20 & 50.11 & 32.24 & 34.63 \\
\hline
\text{Total} & & & & 100.00 \\
\hline
\end{array}
\]

Table 2, entry 12

\[
\begin{align*}
\text{HPLC Condition: Column:} & \quad \text{Chiralpak AD-H, Daicel Chemical Industries, Ltd.;} \\
\text{Eluent:} & \quad \text{Hexanes/IPA (90/10); Flow rate:} \quad 1.0 \text{ mL/min; Detection:} \quad \text{UV230 nm.}
\end{align*}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Index} & \text{Time [Min]} & \text{Area %} & \text{Start [Min]} & \text{End [Min]} \\
\hline
1 & 33.03 & 27.89 & 32.41 & 35.83 \\
\hline
\text{Total} & & & & 100.00 \\
\hline
\end{array}
\]
Scheme 2

7c

GC Condition: **Column:** Chiraldex CP-7495, Advanced Separation Technologies Inc.
Oven: 120 °C; Carrier: Helium, head pressure: 25 psi; Detection: FID 250 °C.

![Chromatogram of 7c](image)

Peak results:

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention Time (min)</th>
<th>Area %</th>
<th>Peak Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.95</td>
<td>52.3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>10.95</td>
<td>47.7</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Scheme 2

7j

GC Condition: **Column:** Chiraldex B-DM, Advanced Separation Technologies Inc.
Oven: 120 °C; Carrier: Helium, head pressure: 10 psi; Detection: FID 250 °C.

![Chromatogram of 7j](image)

Peak results:

<table>
<thead>
<tr>
<th>Peak</th>
<th>Retention Time (min)</th>
<th>Area %</th>
<th>Peak Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.75</td>
<td>56.7</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>10.75</td>
<td>43.3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
Scheme 2

HPLC Condition: **Column:** Chiralpak AD-H, Daicel Chemical Industries, Ltd.;
Eluent: Hexanes/IPA (99/1);
Flow rate: 0.5 mL/min;
Detection: UV206 nm.

![HPLC Chart]

<table>
<thead>
<tr>
<th>Index</th>
<th>Time (Min)</th>
<th>Area %</th>
<th>Start (Min)</th>
<th>End (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.49</td>
<td>46.602</td>
<td>16.52</td>
<td>18.34</td>
</tr>
<tr>
<td>2</td>
<td>18.56</td>
<td>50.062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Time (Min)</th>
<th>Area %</th>
<th>Start (Min)</th>
<th>End (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.49</td>
<td>29.027</td>
<td>17.08</td>
<td>19.16</td>
</tr>
<tr>
<td>2</td>
<td>18.56</td>
<td>70.673</td>
<td>16.40</td>
<td>20.46</td>
</tr>
<tr>
<td>Total</td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2, Entry 1, 4a
Table 2, Entry 1, 4a

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
Table 2, Entry 2, 4b
Table 2, Entry 3, 4c

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
Table 2, Entry 3, 4c

- 150.15
- 142.09
- 135.16
- 132.19
- 129.36
- 128.84
- 127.25
- 124.27

- 77.95
- 77.23
- 76.91

- 62.59
- 54.26
- 51.33

- 26.76
- 24.50
- 20.77
- 12.86
Table 2, Entry 4, 4d
Table 2, Entry 4, 4d

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
Table 2, Entry 5, 4e
Table 2, Entry 6, 4f

Electronic Supplementary Material (ESI) for RSC Advances

This journal is © The Royal Society of Chemistry 2013.
Table 2, Entry 7, 4g

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
Table 2, Entry 8, 4h
Table 2, Entry 9, 4i
Table 2, Entry 10, 4j

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
Table 2, Entry 10, 4j

N
Ns
SPh
Table 2, Entry 11, 5K

NS
Ph

- 150.017
- 146.589
- 138.239
- 134.773
- 132.060
- 129.599
- 129.131
- 128.936
- 127.875
- 127.798
- 126.910
- 124.118

- 77.547
- 77.230
- 76.912

- 60.823

- 49.361
- 42.514

- 24.053
- 20.138
Table 2, Entry 12, 5l

[SPh]

Table 2. Entry 12. 5l

N

1-Naphth
Scheme 2, 6j