Electronic Supplementary Information

One-pot Preparation of Isocyanides from Amines and their Multicomponent Reactions: Crucial Role of Dehydrating agent and Base

Sankar K. Guchhait, Garima Priyadarshani, Vikas Chaudhary, Darshan R. Seladiya, Tapan M. Shah, and Nikita P. Bhogayta

Department of Medicinal Chemistry

National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali) - 160062, Punjab, India, Fax: 91 (0)172 2214692; Tel: 91 (0)172 2214683

Email: skguchhait@niper.ac.in
Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013

Table of Contents

General Information .. S1
NMR Spectra (¹H and ¹³C) of compounds (6a-n) ... S2-S29
NMR Spectra (¹H and ¹³C) of Compounds (7a-o) .. S30-S59
General Information

1H NMR spectra were recorded on a Bruker Avance III-400 (400 MHz) spectrometer. Tetramethylsilane as an internal standard and NMR solvent CDCl$_3$, CD$_2$OD or DMSO-d_6 were used. Chemical shifts are in ppm. The 1H NMR data includes the integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, td = triplet of doublet, dt = doublet of triplet, br = broad), and coupling constants (Hz). 13C NMR spectra were recorded on a Bruker Avance III-400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are in ppm with NMR solvent as an internal standard. The acquisition of High-resolution mass spectra (HRMS) was performed on Bruker maxis Q-TOF. Infrared (IR) spectra were recorded on a Perkin Elmer FTIR with ATR and IR Microscope spectrometer. For thin layer chromatography (TLC) analysis, Merck precoated TLC plates (silica gel 60 GF 254, 0.25 mm) were used. The products were purified by column chromatography with silica gel 60-120 (Merck, silica gel 60-120 mesh, neutral, spherical) or preparative thin layer chromatography silica gel (Rankem, Silica Gel GF 254, 400 mesh). Melting points determined are uncorrected.

All commercially obtained reagents were used as received. Acetonitrile solvent was made anhydrous by distillation on calcium hydride.
Spectra of compounds (6a-n)

6a: 1H NMR
6a: 13C NMR
6b: 1H NMR
6b: 13C NMR
6c: 1H NMR
6c: 13C NMR
6d: 1H NMR
6d: 13C NMR
6e: 1H NMR
6e: 13C NMR
6f: 1H NMR
6f: 13C NMR
6g: 1H NMR

![H NMR spectrum of 6g](image-url)
6g: 13C NMR
6h: 1H NMR
6h: 13C NMR
6i: 1H NMR
6i: 13C NMR
6j: 1H NMR
6j: 13C NMR
6k: 1H NMR
6k: 13C NMR
6l: 1H NMR
6l: 13C NMR
6m: 13C NMR
6n: 1H NMR
6n: 13C NMR
NMR Spectra of Compounds (7a-o)

7a: 1H NMR

![NMR Spectra Image]
7a: 13C NMR
7b: 1H NMR
7b: 13C NMR
7c: 1H NMR
13C NMR

7c: 13C NMR
7d: 1H NMR
7d: 13C NMR
7e: 1H NMR
7e: 13C NMR
7f: 1H NMR
$7f: ^{13}\text{C NMR}$

![13C NMR spectrum of compound 7f](image-url)
7g: 1H NMR

[Image of a 1H NMR spectrum with peak assignments labeled]
7h: ¹H NMR
7h: 13C NMR
7i: 1H NMR
7i: 13C NMR
7j: 1H NMR
7j: 13C NMR
7k: 1H NMR

![NMR spectrum of compound 7k](image)
7k: 13C NMR
7l: 1H NMR
13C NMR
7m: 1H NMR
7m: 13C NMR
7n: 1H NMR
7o: 1H NMR