AIE (AIEE) and Mechanoﬂuorochromic Performances of TPE-methoxylates: Effects of Single Molecular Conformations

Qingkai Qi, Yifei Liu, Xiaofeng Fang, Yumo Zhang, Peng Chen, Yi Wang, Bing Yang, Bin Xu, Wenjing Tian and Sean Xiao-An Zhang

a State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Fax: +86-0431-85153812; E-mail: seanzhang@jlu.edu.cn
b College of Chemistry, Jilin University, Changchun 130012, China. Fax: +86-0431-85153812; E-mail: liuyifei@jlu.edu.cn

Electronic Supplementary Information (ESI\textdagger)
Figure S10. (A) Powder X-ray diffraction patterns of TMOE-1 before and after annealing at 176 °C, and the XRD patterns of TMOE-1 and TMOE-2 stimulated from their single crystal. (B) DSC curves of TMOE-1 and TMOE-2 crystals..9

Figure S11. Real object illustration of the reversible mechanofluorochromic properties of TMOE with grinding and wetting with ethanol..9

Figure S12. (A) PL spectra of TPE crystals before and after grinding. Inset: corresponding digital photos taken under 365 nm UV light irradiation. (B) Powder X-ray diffraction patterns of TPE crystals before and after grinding...10

Figure S13. Analysis of the weak interactions in single crystal structures of (A) TMOE-1, (B) TMOE-2, (C) TDMOE and (D) TPE...10

Reference..10
Characterizations of diaryl methanones (1-4)

4,4'-Dihydroxybenzophenone (1) was synthesized according to the procedure described in literature.[1] 1H NMR (300 MHz, DMSO-d_6) δ (ppm): 10.27 (s, 2H), 7.60 (d, $J = 8.7$ Hz, 4H), 6.87 (d, $J = 8.7$ Hz, 4H).

4, 4'-Dimethoxybenzophenone (2) was obtained by methoxylation of 1. 1H NMR (300 MHz, DMSO-d_6) δ (ppm): 7.71 (d, $J = 8.9$ Hz, 4H), 7.08 (d, $J = 8.9$ Hz, 4H), 3.85 (s, 6H).

3, 3', 4, 4'-Tetrahydroxybenzophenone (3) was synthesized according to the procedure described in the previous literature.[1] 1H NMR (300 MHz, DMSO-d_6) δ (ppm): 9.72 (s, 2H), 9.34 (s, 2H), 7.16 (d, $J = 2.1$ Hz, 2H), 7.05 (dd, $J = 8.2$, 2.1 Hz, 2H), 6.82 (d, $J = 8.2$ Hz, 2H).

3, 3’, 4, 4’-Tetramethoxybenzophenone (4) was obtained by methoxylation of 3. 1H NMR (300 MHz, DMSO-d_6) δ (ppm): 7.32 (m, 4H), 7.12–7.06 (m, 2H), 3.86 (s, 6H), 3.81 (s, 6H).

Characterizations of TMOE, TDMOE and TPE

Tetra(4-methoxyphenyl)ethylene (TMOE)
1H NMR (300 MHz, CDCl$_3$) δ (ppm): 6.93 (d, $J = 8.7$ Hz, 8H), 6.64 (d, $J = 8.7$ Hz, 8H), 3.74 (s, 12H). 13C NMR (125 MHz, CDCl$_3$) δ (ppm): 157.79, 138.38, 136.91, 132.55, 113.03, 55.09.

Tetra(3, 4-dimethoxyphenyl)ethylene (TDMOE)
1H NMR (300 MHz, CDCl$_3$) δ (ppm): 6.66–6.58 (m, 12H), 3.83 (s, 12H), 3.55 (s, 12H). 13C NMR (125 MHz, CDCl$_3$) δ (ppm): 148.04, 147.49, 139.02, 136.78, 123.91, 114.90, 110.35, 55.75, 55.69.

Tetraphenylethene (TPE)
1H NMR (500 MHz, CDCl$_3$) δ (ppm): 7.17–6.95 (m, 20H). 13C NMR (125 MHz, CDCl$_3$) δ (ppm): 143.75, 140.99, 131.36, 127.67, 126.44.
Fig. S1 1H NMR spectrum of TMOE in CDCl$_3$ solution.

Fig. S2 13C NMR spectrum of TMOE in CDCl$_3$ solution.
Fig. S3 1H NMR spectrum of TDMOE in CDCl$_3$ solution.

Fig. S4 13C NMR spectrum of TDMOE in CDCl$_3$ solution.
Fig. S5 \(^1\)H NMR spectrum of TPE in CDCl\(_3\) solution.

Fig. S6 \(^{13}\)C NMR spectrum of TPE in CDCl\(_3\) solution.
Fig. S7 Torsion angle data in (A) TMOE-1 and (B) TMOE-2 crystals.
Fig. S8 Calculated HOMO-LUMO bandgaps of TMOE in (A) TMOE-1 and (B) TMOE-2 crystals using B3LYP/6-31+g(d, p) basis set.

Fig. S9 PL spectra (A) and XRD patterns (B) of TMOE-2: pristine, ground and annealed sample (150°C for 1 min).
Fig. S10 (A) Powder X-ray diffraction patterns of TMOE-1 before and after annealing at 176 °C for 10 min, and the XRD patterns of TMOE-1 and TMOE-2 stimulated from their single crystal. (B) DSC curves of TMOE-1 and TMOE-2 crystals.

Fig. S11 Real object illustration of the reversible mecanofluorochromic properties of TMOE with grinding and wetting with ethanol. The pictures were taken under 365 nm UV light irradiation. (a) TMOE-1 pristine crystals; (b) partially ground sample at one side; (c) entirely ground sample; (d) partially recovered sample by wetting with ethanol at the centre; (e) entirely recovered sample by wetting with ethanol; (f) partially ground sample at the center from the recovered sample.
Fig. S12 (A) PL spectra of TPE crystals before and after grinding. Inset: corresponding digital photos taken under 365 nm UV light irradiation. (B) Powder X-ray diffraction patterns of TPE crystals before and after grinding.

Fig. S13 Analysis of the weak interactions in single crystal structures of (A) TMOE-1, (B) TMOE-2, (C) TDMOE and (D) TPE. C-H···π (green line) and C-H···O (orange line).

Reference: