Supplementary Material

One-Pot Synthesis of Hydrophilic ZnCuInS/ZnS Quantum Dots for *in vivo* Imaging

Weisheng Guo*, Na Chenb, Chunhong Donga, Yu Tüb, Bingbo Zhangc*, and Jin Changa*

a Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin, 300072, China.

b Department of Medical Radioprotection, School of Radiation Medicine and Health, Soochow University, Suzhou, 200072, China

c The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, China.

Corresponding authors:

Tel/Fax: +086-022-27401821, jinchang@tju.edu.cn (Jin Chang)

Tel: +086-021-65988029, *Fax:* +086-021-65983706-0, bingbozhang@tongji.edu.cn (Bingbo Zhang)
Fig. S1 The Zeta potential distribution of obtained hydrophilic ZCIS/ZnS QDs dispersed in water.

Fig. S2 The recorded HDs of prepared hydrophilic ZCIS/ZnS QDs emitting at 690 nm in PBS buffer. (Three samples were recorded)
Fig. S3 The fluorescence intensity analysis of prepared ZCIS/ZnS QDs emitting at 690 nm upon incubation in human serum at 37 °C indicated that over 80% of the fluorescence intensity of the QDs was maintained after incubation in serum for 24 h.