Supporting Information

Nano silicon carbide: a new lithium-insertion anode material on the horizon

T. Sri Devi Kumari*a,b, D. Jeyakumar*a and T. Prem Kumarb,*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

† Electronic Supplementary Information (ESI) available: See DOI: 10.1039/b000000x/

Supporting Information

Thermogravimetric and differential thermal analyses of SiC-syn were carried out in air at a heating ramp of 2°C min⁻¹ (TA Instruments, model SDT Q600). The thermal profiles (Fig. S1) show an exothermic reaction between about 520 and 600°C corresponding to the loss of surface carbon on SiC-syn. The weight loss of 9.2% represents the amount of carbon deposited on the SiC during the synthesis process. An increase in the weight of the sample beyond 604°C indicates a partial oxidation of the material into SiO₂. This was further confirmed by XRD analysis. As can be seen from the accompanying XRD patterns (Fig. S2), the carbon in the as-synthesized SiC-syn was absent when it was heated to 600°C. However, additional peaks, corresponding to SiO₂, could be seen in the sample heated up to 800°C. Besides XRD, the formation of SiC was confirmed by XPS analysis (Thermo Scientific, model MultiLab 2000). Fig. S3 presents the Si 2p, C 1s and O 1s XPS spectra recorded with SiC-syn. The presence of an SiO₂ layer on SiC-syn is indicated by the peak at a binding energy of 103.9 eV in the Si 2p spectrum, while the one at a binding energy of 101.4 eV relates to Si in SiC. The asymmetric profile of the spectrum suggests the presence of oxygen-depleted silica (SiOₓ, 1<x<2) on the surface of SiC as well as to C atoms bonded to four nearest neighbor carbons as in adventitious (free) carbon or in graphite.

Fig. S1. TG and DTA curves of SiC-syn.

Fig. S2. XRD patterns of (bottom) as-synthesized SiC-syn; (middle) SiC-syn heated to 600°C in air; and (top) SiC-syn heated to 800°C in air.

Fig. S3. (a) Si 2p; (b) O 1s; and (c) C 1s XPS spectra of SiC-syn.