Electronic Supplementary Information

Facile synthesis of Co$_2$P$_2$O$_7$ nanorods as a promising pseudocapacitive material towards high-performance electrochemical capacitors

Linrui Hou, a, * Lin Lian, a Diankai Li, a Jingdong Lin, b, * Gang Pan, a, c Longhai Zhang, a Xiaogang Zhang, a qingan Zhang a and Changzhou Yuan a, *

a School of materials Science & Engineering, Anhui University of technology, Ma’anshan, 243002, P.R. China. E-mail: houlr629@163.com; ayuancz@163.com

b Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China. E-mail: jdlin@xmu.edu.sg

c College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China.
Fig. S1 FESEM images with different magnifications of the Co$_2$P$_2$O$_7$ nanosheets synthesized with the absence of CH$_3$COONH$_4$
Fig. S2 SCs as a function of current densities of the Co$_2$P$_2$O$_7$ nanosheets synthesized with the absence of CH$_3$COONH$_4$

The unique Co$_2$P$_2$O$_7$ nanosheet electrode exhibits typical pseudocapacitances of 456, 443, 432, 410, 398, 386, 373 and 353 F g$^{-1}$ at current densities of 1, 2, 3, 4, 5, 6, 8 and 10 A g$^{-1}$, respectively, which suggests that ~77% of the SC is still retained when the charge-discharge rate is increased from 1 to 10 A g$^{-1}$.