Supporting Information

A Water Soluble Fluorescent Sensor for the Reversible Detection of Tin (IV) Ion and Phosphate Anion

Jing Liu, Kai Wu, Xin Li,* Yifeng Han* and Min Xia*

a Department of Chemistry, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
b ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

hanyf@zstu.edu.cn and lixin81@zju.edu.cn

Contents

Determination of quantum yields ... S2
Other Photophysical properties of DQS ... S2
Determination of the binding constant .. S6
The proposal structure of DQS-Sn$^{4+}$ complex S7
The characterization data of all compounds ... S7
References .. S9
Determination of quantum yields

The quantum yield of DQS (Φ_0) and DQS-Sn$^{4+}$ (Φ_1, in the present of 5 equiv of Sn$^{4+}$ ions) were determined according to the literature.1

\[
\Phi_{\text{Sample}} = \Phi_{\text{0}} \cdot \frac{A_{\text{0}} \cdot F_{\text{Sample}} \cdot \lambda_{\text{ex0}} \cdot \eta_{\text{Sample}}^2}{A_{\text{Sample}} \cdot F_{\text{0}} \cdot \lambda_{\text{exSample}} \cdot \eta_{\text{0}}^2}
\]

Where Φ is quantum yield; A is absorbance at the excitation wavelength; F is integrated area under the corrected emission spectra; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; the Sample and QS refer to the sample and the standard, respectively. We chose quinine sulfate in 0.1N H$_2$SO$_4$ as standard, which has the quantum yield of 0.546.2

Other Photophysical properties of DQS

![Absorption spectra of DQS (10 μM) in water solution in the present of Sn$^{4+}$, Fe$^{3+}$, and Cr$^{3+}$ (1 equiv), respectively.](Figure S1)

Figure S1. Absorption spectra of DQS (10 μM) in water solution in the present of Sn$^{4+}$, Fe$^{3+}$, and Cr$^{3+}$ (1 equiv), respectively.
Figure S2. Job’s plot of sensor DQS, the total concentration of the sensor and Sn$^{4+}$ is 25.0 μM.

Figure S3. Effect of the pH on the fluorescence emission of DQS (5.0 μM).
Figure S4. Effect of the pH on the fluorescence emission of DQS-Sn$^{4+}$ complex (5.0 μM of DQS in the presence of 20 equiv of Sn$^{4+}$).

Figure S5. Fluorescence spectra of DQS (5 μM) in water in the presence of different concentrations of Fe$^{3+}$ (0-90 μM) ($\lambda_{ex} = 360$ nm). Inset: fluorescence intensity changes as a function of Fe$^{3+}$ concentration.
Figure S6. Job’s plot of sensor DQS, the total concentration of the sensor and Fe$^{3+}$ is 25.0 µM.

Figure S7. Fluorescence spectra of DQS (5 µM) in water in the presence of different concentrations of Cr$^{3+}$ (0-100 µM) (λ_{ex} = 360 nm). Inset: fluorescence intensity changes as a function of Cr$^{3+}$ concentration.
The apparent binding constant \((K_S)\) of \(\text{DQS}\) with \(\text{Sn}^{4+}\) was determined using the nonlinear least-squares analysis base on a 1:1 complex expression:\(^3\)

\[
\frac{F}{F_0} = 1 + \frac{F_{\text{obs}} - 1}{2F_0} \left[1 + \frac{C_M}{C_L} + \frac{1}{K_SC_L} - \sqrt{\left(1 + \frac{C_M}{C_L} + \frac{1}{K_SC_L} \right)^2 - 4 \frac{C_M}{C_L} } \right]
\]

Where \(F_0\) or \(F\) is the fluorescence emission intensities in the absence or presence of \(\text{Sn}^{4+}\) ions, \(C_M\) and \(C_L\) are the concentrations of \(\text{Sn}^{4+}\) and \(\text{DQS}\), and \(K_S\) is the stability constant.
Figure S9. A proposed structure of DQS-Sn4+ complex.

The characterization data of all compounds

1H NMR of compound 1
1H NMR of compound 2 (DQS)

13C NMR of compound 2 (DQS)
HRMS of compound 2 (DQS)

![Qualitative Analysis Report](image)

<table>
<thead>
<tr>
<th>Peak</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>140.053</td>
<td>5.45E-02</td>
</tr>
<tr>
<td>159.065</td>
<td>9.23E-02</td>
</tr>
<tr>
<td>180.050</td>
<td>6.94E-02</td>
</tr>
<tr>
<td>192.055</td>
<td>1.48E-01</td>
</tr>
<tr>
<td>197.039</td>
<td>7.91E-02</td>
</tr>
<tr>
<td>224.090</td>
<td>1.20E-01</td>
</tr>
<tr>
<td>272.129</td>
<td>4.73E-02</td>
</tr>
<tr>
<td>457.195</td>
<td>3.29E-02</td>
</tr>
<tr>
<td>506.163</td>
<td>5.93E-02</td>
</tr>
<tr>
<td>515.141</td>
<td>5.32E-02</td>
</tr>
</tbody>
</table>

References