Supporting information for

Recyclable CuO-Catalyzed Synthesis of 4(3H)-Quinazolinones

Dan Zhan, Tianbin Li, Haidong Wei, Wen Weng, Khashayar Ghandi, and Qingle Zeng*

Institute of Green Catalysis and Synthesis, State Key Lab of Geohazard Prevention and Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Email: qinglezeng@hotmail.com

Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000, PR China

Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada

Contents:

General Remarks .. S2

Experimental Section .. S3

Analytical Data for Compounds 3a-3o ... S4

1H and 13C NMR Spectra ... S9
General Remarks

All glassware used was dried in an electric oven at 120 °C. All chemicals were purchased from Sigma-Aldrich, Alfa Aesar, Shanghai Aladdin Reagent Co., Ltd, and Chengdu Changzheng Chemical Co. and used as received.

All compounds were characterized by 1H NMR, 13C NMR, ESI-MS and IR spectroscopy. Copies of the 1H and 13C spectra can be found at the end of the Supporting Information. Nuclear Magnetic Resonance spectra were recorded on a Bruker Advance 300MHz or 400 MHz instrument. All 1H NMR experiments are reported in δ units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) or DMSO (2.50 ppm) in the deuterated solvent, unless otherwise stated. All 13C NMR spectra are reported in ppm relative to deuteron-chloroform (77.23 ppm) or DMSO-d6 (δ = 39.60 ppm), unless otherwise stated, and all were obtained with 1H decoupling. All IR spectra were taken on a Bruker Tensor-27 infrared spectrometer with an OPUS workstation. Electron-spraying ionization Mass Spectra are recorded on an Agilent 1200 series LC/MS DVL instrument. Melting points were determined on an Electrothermal melting-point apparatus. The purities of all the synthesized compounds were checked by thin-layer chromatography (TLC) using different organic solvents.
Experimental Section

Typical procedure for the synthesis of 4(3H)-quinazolinones
A mixture of anthranilamide (1.0 mmol), benzaldehyde (1.0 mmol) and CuO (0.03 mmol) in DMA (3 ml) was stirred under air in an oil bath at 120 °C for 24 hours. And then the reaction mixture was cooled to room temperature and the upper clear solution was carefully removed by a pipette. DMA (3 mL) was added to the vial, and the vial was shaken and then kept in stillness for a moment, and then the upper clear solution was removed by a pipette again. DMA (3 mL) was added to the vial again and the upper clear solution was removed again (Note: The black solid CuO in the bottom of the vial may be used as the recycling catalyst for the following synthesis of 4(3H)-quinazolinone once other reagents were added). The combined solution was condensed in vacuum to remove the solvent DMA, which was used as the solvent for the next reaction. The residual was purified by column chromatography on silica gel (gradient eluent with a mixed solution of petroleum ether and ethyl acetate) to give the pure 4(3H)-quinazolinone.

Typical procedure for the synthesis of 4(3H)-quinazolinones with the recycling catalyst CuO
During the workup operation of the typical procedure for the synthesis of 4(3H)-quinazolinones, the black powder CuO in the bottom of the vial was suitable for the recycling catalyst of the synthesis of 4(3H)-quinazolinone. To the vial was added anthranilamide (1.0 mmol), benzaldehyde (1.0 mmol), DMA (3 mL). The vial was stirred under air in an oil bath at 120 °C for 24 hours. After similar workup, the reaction of the first recycling of the catalyst CuO was complete. And the next time recycling reaction may be continued with the black powder CuO in the bottom of the vial.

Scale-up procedure for the synthesis of 2-phenyl-4(3H)-quinazolinone
A mixture of anthranilamide (20 mmol), benzaldehyde (20 mmol) and CuO (0. 6 mmol) in DMA (60 ml) was stirred under air in an oil bath at 120 °C for 24 hours. And then the reaction mixture was cooled to room temperature and filtrated to remove CuO. The filtrate was condensed in vacuum to remove the solvent DMA, which may be used for next reaction. The resulting residual was recrystallized from ethanol to give white solid 2-phenyl-4(3H)-quinazolinone 3a.
Analytical Data for Compounds 3a-3o

2-phenyl-4(3H)-quinazolinone (3a)

White solid. Mp 239-241 °C. H NMR (300 MHz, CDCl₃), δ (ppm): 11.12 (s, 1H), 8.33 (d, J = 7.52 Hz, 1H), 8.20-8.22 (m, 2H) 7.78-7.85 (m, 2H), 7.59 (t, J = 2.78 Hz, 3H) 7.51(t, J = 3.19 Hz, 1H). C NMR (75 MHz, CDCl₃), δ (ppm): 163.6, 151.6, 149.5, 134.8, 132.8, 131.6, 129.0, 128.0, 127.3, 126.8, 126.5, 120.8. ESI-MS (negative mode), m/z = 221 [M–H]. IR (KBr), ν (cm⁻¹): 2924, 1730, 1664, 1601, 1451, 1375, 1212, 1045, 942, 752, 694. Anal. calcd. (%) for C14H10N2O: C, 75.66; H, 4.54; N, 12.60. Found: C, 75.32; H, 4.41; N, 12.53.

2-(4-Methylphenyl)-4(3H)-quinazolinone (3b)

White solid. Mp 240-241 °C. H NMR (300 MHz, DMSO-d₆), δ (ppm): 12.46 (s, 1H), 8.14 (d, J = 7.95Hz, 1H), 8.09 (d, J = 8.21Hz, 2H), 7.83 (t, J = 6.87Hz, 1H), 7.72 (d, J = 7.68Hz, 1H), 7.51 (t, J = 7.02Hz, 1H), 7.35 (d, J = 8.07Hz, 2H), 2.39. C NMR (100 MHz, DMSO-d₆), δ (ppm): 167.4, 157.4, 154.0, 146.6, 139.7, 135.1, 134.4, 132.8, 132.6, 131.6, 126.1, 26.2. ESI-MS (negative mode), m/z = 235 [M–H]. IR (KBr), ν (cm⁻¹): 2921, 1657, 1599, 1445, 1300, 1149, 939, 765, 686. Anal. calcd. (%) for C15H12N2O: C, 76.25; H, 5.12; N, 11.86. Found: C, 76.12; H, 5.03; N, 11.69.

2-(3-methoxyphenyl)-4(3H)-quinazolinone (3c)

White solid. Mp 202-204 °C. H NMR (300 MHz, CDCl₃), δ (ppm): 10.75 (s, 1H), 8.31 (d, J = 8.16 Hz, 1H), 7.81-7.84 (m, 2H), 7.69-7.73 (m, 2H), 7.46-7.53 (m, 2H), 7.15 (d, J = 1.71 Hz, 1H), 3.95 (s, 3H). C NMR (100 MHz, DMSO-d₆), δ (ppm): 162.7, 159.8, 152.5, 135.0, 134.4, 130.2, 127.1, 126.3, 121.4, 120.5, 118.0, 113.0, 55.8. ESI-MS (negative mode), m/z = 251 [M–H]. IR (KBr), ν (cm⁻¹): 2987, 1786, 1679, 1584, 1375, 1218, 1043, 758, 669. Anal. calcd. (%) for C15H12N2O2: C, 71.42; H, 4.79; N, 11.10. Found: C, 71.25; H, 4.86; N, 11.18.

2-(3,5-ditertbutyl-2-hydroxyphenyl)-4(3H)-quinazolinone (3d)
White solid. Mp 287-288 °C. 1H NMR (300 MHz, CDCl$_3$), δ (ppm): 14.37 (s, 1H), 10.54 (s, 1H), 8.32 (d, J = 7.95Hz, 1H), 7.74-7.83 (m, 2H), 7.47-7.59 (m, 2H) 7.46-7.51 (m, 1H), 1.49 (s, 9H), 1.39 (s, 9H). 13C NMR (100 MHz, DMSO-d_6), δ (ppm): 162.1, 158.2, 155.4, 145.9, 140.1, 137.0, 135.5, 128.2, 127.3, 126.5, 126.1, 121.0, 112.4, 35.3, 34.9, 31.8, 29.8. ESI-MS (negative mode), m/z = 349 [M–H]. IR (KBr), ν (cm$^{-1}$): 2965, 1676, 1610, 1563, 1456, 1217, 1047, 769, 667. Anal. calcd. (%) for C$_{22}$H$_{26}$N$_2$O$_2$: C, 75.40; H, 7.48; N, 7.99. Found: C, 75.22; H, 7.59; N, 7.82.

2-(4-(dimethylamino)phenyl)-4(3H)-quinazolinone (3e)

White solid. Mp 247-248 °C. 1H NMR (300 MHz, CDCl$_3$), δ (ppm): 9.83 (s, 1H), 8.27 (d, J = 7.78Hz, 1H), 8.04 (d, J = 8.92Hz, 2H), 7.85 (d, J = 8.21Hz, 1H), 7.76 (dt, J = 7.01Hz, 1.42Hz, 1H), 7.43 (t, J = 6.93Hz, 1H), 6.79 (d, J = 9.05Hz, 2H), 3.03 (s, 6H). 13C NMR (75 MHz, CDCl$_3$), δ (ppm): 163.2, 152.5, 151.6, 150.0, 134.6, 129.5, 128.4, 127.4, 126.3, 125.6, 112.0, 111.7, 40.1. ESI-MS (negative mode), m/z = 264 [M–H]. IR (KBr), ν (cm$^{-1}$): 3018, 1731, 1665, 1592, 1533, 1372, 1215, 1046, 939, 750, 667. Anal. calcd. (%) for C$_{16}$H$_{15}$N$_3$O: C, 72.43; H, 5.70; N, 15.84. Found: C, 72.51; H, 5.63; N, 15.72.

2-(4-fluorophenyl)-4(3H)-quinazolinone (3f)

White solid. Mp 288-289 °C. 1H NMR (300 MHz, DMSO-d_6), δ (ppm): 12.57 (s, 1H), 8.23-8.27 (m, 2H), 8.15 (d, J = 7.92 Hz, 1H), 7.84 (t, J = 6.84 Hz, 1H), 7.53 (t, J = 7.03 Hz, 1H), 7.39 (t, J = 8.85 Hz, 2H). 13C NMR (100 MHz, DMSO-d_6), δ (ppm): 167.4, 156.6, 153.8, 139.8, 135.6, 134.4, 132.6, 131.8, 131.0, 126.1, 120.9, 120.7. ESI-MS (negative mode), m/z = 239 [M–H]. IR (KBr), ν (cm$^{-1}$): 2920, 1660, 1603, 1483, 1346, 1232, 1149, 1076, 939, 763, 684. Anal. calcd. (%) for C$_{14}$H$_9$FN$_2$O: C, 69.99; H, 3.78; N, 11.66. Found: C, 69.87; H, 3.89; N, 11.48.

2-(4-chlorophenyl)-4(3H)-quinazolinone (3g)
White solid. Mp 298-299 °C. 1H NMR (300 MHz, DMSO-d_6), δ (ppm): 12.61 (s, 1H), 8.20 (d, J = 8.55Hz, 2H), 8.15 (d, J = 7.92Hz, 1H), 7.85 (t, J = 7.10Hz, 1H), 7.74 (d, J = 8.16Hz, 1H), 7.63 (d, J = 8.55Hz, 2H), 7.53 (t, J = 7.37Hz, 1H). 13C NMR (100 MHz, DMSO-d_6), δ (ppm): 162.6, 151.8, 148.9, 136.7, 135.1, 132.0, 130.0, 129.1, 127.9, 127.2, 126.3, 121.4. ESI-MS (negative mode), m/z = 255 [M–H]$.^-$ IR (KBr), ν (cm$^{-1}$): 2922, 1671, 1598, 1476, 1344, 1280, 1121, 1093, 982, 760, 683. Anal. calcd. (%) for C$_{14}$H$_9$ClN$_2$O: C, 65.51; H, 3.53; N, 10.91. Found: C, 65.63; H, 3.64; N, 10.78.

2-(4-bromophenyl)-4(3H)-quinazolinone (3h)

White solid. Mp 298-300 °C. 1H NMR (300 MHz, DMSO-d_6), δ (ppm): 12.60 (s, 1H), 8.14 (t, J = 7.41Hz, 3H), 7.85 (t, J = 7.02Hz, 1H), 7.76 (t, J = 7.56Hz, 3H), 7.54 (t, J = 7.56Hz, 1H). 13C NMR (100 MHz, DMSO-d_6), δ (ppm): 162.6, 151.9, 148.9, 135.1, 132.3, 132.0, 130.2, 127.9, 127.2, 126.3, 125.7, 121.4. ESI-MS (negative mode), m/z = 299 [M (79Br) –H]$,^-$, 301 [M (81Br) –H]. IR (KBr), ν (cm$^{-1}$): 2986, 1732, 1375, 1216, 1047, 756, 668. Anal. calcd. (%) for C$_{14}$H$_9$BrN$_2$O: C, 55.84; H, 3.01; N, 9.30. Found: C, 55.92; H, 3.16; N, 9.23.

2-(3-bromophenyl)-4(3H)-quinazolinone (3i)

White solid. Mp 271-272 °C. 1H NMR (300 MHz, DMSO-d_6), δ (ppm): 12.62 (s, 1H), 8.38 (s, 1H), 8.10-8.20 (m, 2H), 7.78-7.88 (m, 2H), 7.66-7.75 (m, 1H), 7.57-7.45 (m, 2H). 13C NMR (100 MHz, DMSO-d_6), δ (ppm): 162.5, 151.3, 135.4, 135.2, 134.5, 131.2, 131.2, 130.8, 128.1, 127.4, 127.3, 126.3, 122.4, 121.6. ESI-MS (negative mode), m/z = 299 [M (79Br) –H]$,^-$, 301 [M (81Br) –H]. IR (KBr), ν (cm$^{-1}$): 2923, 1678, 1607, 1471, 1309, 1152, 952, 794, 677. Anal. calcd. (%) for C$_{14}$H$_9$BrN$_2$O: C, 55.84; H, 3.01; N, 9.30. Found: C, 55.90; H, 3.21; N, 9.22.

2-(2-bromophenyl)-4(3H)-quinazolinone (3j)
White solid. Mp 159-160 °C. 1H NMR (300 MHz, CDCl$_3$), δ (ppm): 9.54 (s, 1H), 8.32 (d, $J = 7.87$ Hz, 1H), 7.83 (d, $J = 2.23$Hz, 2H), 7.71-7.77 (m, 2H), 7.48-7.57 (m, 2H), 7.41 (dt, $J = 7.87$Hz, 1.08Hz, 1H). 13C NMR (75 MHz, CDCl$_3$), δ (ppm): 162.2, 151.9, 148.8, 134.8, 133.7, 132.0, 131.2, 127.97, 127.94, 127.3, 126.4, 121.0, 120.8. ESI-MS (negative mode), m/z = 299 [M (79Br –H)], 301 [M (81Br –H)]. IR (KBr), ν (cm$^{-1}$): 3015, 1673, 1606, 1472, 1304, 1216, 1145, 1046, 945, 755, 666. Anal. calcd. (%) for C14H9BrN2O: C, 55.84; H, 3.01; N, 9.30. Found: C, 55.97; H, 3.25; N, 9.17.

2-furyl-4(3H)-quinazolinone (3k)

White solid.

1H NMR (300 MHz, CDCl$_3$), δ (ppm): 10.85 (s, 1H), 8.30 (d, $J = 7.75$Hz, 1H), 7.77 (d, $J = 5.36$Hz, 2H), 7.66 (s, 1H), 7.45-7.50 (m, 2H), 6.65-6.67 (m, 1H). 13C NMR (75 MHz, CDCl$_3$), δ (ppm): 162.8, 149.2, 146.2, 145.5, 143.5, 134.9, 127.7, 126.6, 120.9, 114.0, 112.8, 14.1. ESI-MS (negative mode), m/z = 211 [M–H]. IR (CHCl$_3$), ν (cm$^{-1}$): 2986, 1667, 1603, 1552, 1502, 1459, 1344, 1315, 1242, 1217, 1173, 1030, 965, 750, 666. Anal. calcd. (%) for C12H8N2O2: C, 67.92; H, 3.80; N, 13.20. Found: C, 67.99; H, 3.96; N, 13.12.

2-pentylquinazolin-4(3H)-one (3l)

White solid. Mp 152-154 °C. 1H NMR (300 MHz, DMSO-d_6), δ (ppm): 12.15 (s, 1H), 8.07 (d, $J = 7.89$ Hz, 1H), 7.72-7.78 (m, 1H), 7.58 (d, $J = 8.10$ Hz, 1H), 7.41-7.46 (m, 1H), 2.49-2.60 (m, 2H), 1.67-1.72 (m, 2H), 1.29 (d, $J = 7.14$ Hz, 4H), 0.85 (d, $J = 6.66$ Hz, 3H). 13C NMR (75 MHz, DMSO-d_6), δ (ppm): 162.0, 157.7, 149.0, 134.4, 126.8, 126.0, 125.8, 120.8. IR (KBr), ν (cm$^{-1}$): 3846, 3696, 3121, 2925, 1845, 1675, 1614, 1564, 1470, 1380, 1324, 1254, 1027, 976, 737, 647. Anal. calcd. (%) for C13H16N2O: C, 72.19; H, 7.46; N, 12.95. Found: C, 72.12; H, 7.58; N, 12.82.

2-phenyl-3-propyl-4(3H)-quinazolinone (3m)

White solid. Mp 98-100 °C. 1H NMR (400 MHz, DMSO-d_6), δ (ppm): 8.19-8.22 (m, 1H), 7.83 (t, $J = 7.60$Hz, 1H), 7.62-7.68 (m, 3H), 7.55-7.58 (m, 4H), 3.84 (t, $J = 7.60$Hz, 2H), 1.49-1.54 (m, 2H), 0.63-0.67 (m, 3H). 13C NMR (100 MHz, DMSO-d_6), δ (ppm): 161.6, 156.5, 147.3, 135.9, 134.8,
130.0, 129.7, 128.9, 128.8, 128.4, 127.6, 127.4, 126.6, 120.9, 47.1, 21.7, 11.4. ESI-MS (negative mode), m/z = 263 [M–H]. IR (KBr), ν (cm⁻¹): 2983, 1677, 1604, 1461, 1360, 1249, 1073, 770, 697. Anal. calcd. (%) for C17H16N2O: C, 77.25; H, 6.10; N, 10.60. Found: C, 77.45; H, 6.32; N, 10.46.

3-benzyl-2-phenyl-4(3H)-quinazolinone (3n)

White solid. Mp 148-150 °C. ¹H NMR (400 MHz, DMSO-d₆), δ (ppm): 8.21-8.23 (m, 1H), 7.88 (t, J = 7.60 Hz, 1H), 7.72 (d, J = 8.00 Hz, 1H), 7.58-7.62 (m, 1H), 7.40-7.50 (m, 5H), 7.22 (d, J = 6.00 Hz, 3H), 6.92 (d, J = 6.80 Hz, 2H), 5.19 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆), δ (ppm): 161.8, 156.6, 147.4, 137.1, 135.6, 135.2, 130.1, 128.8, 128.6, 128.4, 127.8, 127.6, 127.5, 126.8, 126.7, 120.8, 48.6. ESI-MS (negative mode), m/z = 311 [M–H]. IR (KBr), ν (cm⁻¹): 3033, 1674, 1584, 1352, 1244, 949, 771, 698. Anal. calcd. (%) for C21H16N2O: C, 80.75; H, 5.16; N, 8.97. Found: C, 80.87; H, 5.28; N, 8.82.

6-chloro-2-phenylquinazolin-4(3H)-one (3o)

White solid, Mp. 282-284 °C. ¹H NMR (300 MHz, CDCl₃), δ (ppm): 12.75 (br, 1H), 8.17 (d, J = 6.9 Hz, 2H), 8.09 (d, J = 2.1 Hz, 1H), 7.87 (dd, J₁ = 8.7 Hz, J₂ = 2.1 Hz, 1H), 7.77 (d, J = 87 Hz, 1H), 7.53-7.63 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 161.4, 152.9, 147.4, 134.7, 130.8, 129.7, 128.6, 127.8, 124.9, 122.2. IR (KBr), ν (cm⁻¹): 3724, 3565, 2983, 2351, 1681, 1605, 1577, 1482, 1305, 1158, 1122, 946, 888, 847, 770, 667. Anal. calcd. (%) for C14H9ClN2O: C, 65.51; H, 3.53; N, 10.91. Found: C, 65.57; H, 3.59; N, 10.42.
Z0-2

Current Data Parameters
NAME 1nl-2011-177
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
DATE 20111121
TIME 9.34
INSTRNM mw000
RESOLV 5000
PULPROG zgpp
TD 65536
SOLVENT CDCl3
NS 512
DS 4
SW 2.257572864 HZ
FIDRES 0.3490004 Hz
AQ 1.4455108 sec
Rf 8152
SN 20.000 ussec
DE 8.000 ussec
TE 205.3 K
DI 2.0000000000 sec
SI1 0.0000000000 sec
DELTA 1.8999999998 sec
MCREST 0.0000000000 sec
MCREST 0.0150000000 sec

-------- CHANNEL f1 --------
NUC1 13C
F1 10.500 ussec
PL1 -0.01 dB
SF1 75.4760505 MHz

-------- CHANNEL f2 --------
CPUMSG2 wait16
NUC2 1 H
POSG2 20.00 ussec
PL2 0.10 dB
RL2 17.74 dB
PL13 27.74 dB
SF2 360.1312005 MHz

F2 - Processing parameters
S1 65535
SF 75.46775155 MHz
WF EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40

3D NMR plot parameters
cx 20.00 cm
cy 4.60 cm
f1 260.50000000 cm
f1 451.40 Hz
f2 -0.5000000000 cm
f2 -415.87 Hz
FMAX 10.00000000 cm
FMIN 777.3176 Hz/cm