SUPPORTING INFORMATION

Polypyrrole-derived Mesoporous Nitrogen-doped Carbons with Intrinsic Catalytic Activity in the Oxygen Reduction Reaction

Marta Sevilla,* Linghui Yu, Tim Fellinger, Antonio B. Fuertes and Maria-Magdalena Titirici

a Instituto Nacional del Carbón (CSIC), P. O. Box 73, Oviedo 33080, Spain

b Max-Planck Institute of Colloids and Interfaces, Am Muhlenberg 1, 14476, Potsdam, Germany

c Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, E1 4NS, London
Figure S1. XRD pattern in the low-angle region of the CS900 sample.
Figure S2. a) Raman spectra of graphitized and amorphous carbon regions of CX900, and b) thermogravimetric analysis of the N-doped mesoporous carbons CX900 and CS900. A templated mesoporous carbon prepared using SBA-15 as template and furfuryl alcohol as carbon precursor (C-X-AF) was employed for comparison in Fig. S2. This thermogravimetric analysis reveals that the N-doped mesoporous carbons contain no iron residue which may catalyze the ORR reaction.
Figure S3. Cyclic voltammograms of the N-doped mesoporous carbons at a scan rate of 50 mV s\(^{-1}\) in 0.05 M H\(_2\)SO\(_4\). a) CS900, b) CX900, and c) CX1000.
Figure S4. RDE polarization curves of the N-doped mesoporous carbons, Vulcan, and 20 wt% Pt@C in 0.05 M H₂SO₄ at a constant rotation rate of 1600 rpm.