Supplementary Information

A highly selective off-on fluorescent chemodosimeter for Hg$^{2+}$ based on a anthracene-bis(phosphinesulfide) conjugate

Alessandra Garau,*a Pierluigi Caboni,b Claudia Caltagirone,a Francesco Demartin,c Francesco Isaia,**a and Vito Lippolis*a

a Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
b Dipartimento di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, Italy
c Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
e-mail: isaia@unica.it

Contents:

1. Figure S1 page S2
2. Figure S2 S2
3. Figure S3 S3
4. Figure S4 S3
5. Figure S5 S4
6. Figure S6 S4
7. Figure S7 S4
Figure S1. 31P NMR spectrum of L1 (δ in ppm, CDCl\textsubscript{3}, 25 °C).

Figure S2. UV-Vis spectra of L1 (black line) (2.79×10-5 M) and of a solution of L1 (red line) in MeCN/H\textsubscript{2}O 4:1 (v/v), 25°C, upon addition of Hg2+ ion, recorded after 1 h ([Hg2+]/[L1] molar ratio of 0.5).
Figure S3. Time trace of the fluorescence intensity at 411 nm of the reaction of L₁ (2.79×10⁻⁵ M) and Hg²⁺ at the [Hg²⁺]/[L₁] molar ratio of a) 0.25; b) 0.5, c) 1. MeCN/H₂O 4:1 (v/v), 25 °C, λ_{ex} = 376 nm.

Figure S4. Job’s plot data for the system Hg²⁺-L₁. The total concentration of L₁ and Hg²⁺ was 2.8×10⁻⁵ M. Spectra were measured at 25 °C after 1 h the preparation of solutions. λ_{ex} = 376 nm.
Figure S5. 31P NMR spectra in CDCl$_3$ of (a) L1 (1.35×10$^{-3}$ M), and (b) after the addition of Hg(ClO$_4$)$_2$ in CD$_3$CN ([Hg$^{2+}$]/[L1] molar ratio of 0.5) recorded after 20 min from the mixing, (c) the solution from (b) recorded after 1 h from the mixing; δ in ppm, 25 °C).

Figure S6. 1H NMR spectrum of the solution obtained from the reaction of L1 in CDCl$_3$ (1.35×10$^{-3}$ M) with Hg(ClO$_4$)$_2$ in CD$_3$CN ([Hg$^{2+}$]/[L1] molar ratio of 0.5) after the separation of the solid complex [HgL$_2$]; δ in ppm, 25 °C).

Figure S7. Atmospheric Pressure Chemical Ionisation Mass (APCI) spectrum of L1 (4.35×10$^{-7}$ M) in MeCN upon addition of Hg$^{2+}$ ion. [Hg$^{2+}$]/[L1] molar ratio of 0.5. Spectrum recorded after 1h from the mixing.